| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptre | Structured version Visualization version GIF version | ||
| Description: Lemma for iirevcn 24822 and related functions. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmptre.1 | ⊢ 𝑅 = (TopOpen‘ℂfld) |
| cnmptre.2 | ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) |
| cnmptre.3 | ⊢ 𝐾 = ((topGen‘ran (,)) ↾t 𝐵) |
| cnmptre.4 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| cnmptre.5 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| cnmptre.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ 𝐵) |
| cnmptre.7 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅)) |
| Ref | Expression |
|---|---|
| cnmptre | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (𝑅 ↾t 𝐴) = (𝑅 ↾t 𝐴) | |
| 2 | cnmptre.1 | . . . . . . 7 ⊢ 𝑅 = (TopOpen‘ℂfld) | |
| 3 | 2 | cnfldtopon 24668 | . . . . . 6 ⊢ 𝑅 ∈ (TopOn‘ℂ) |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (TopOn‘ℂ)) |
| 5 | cnmptre.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 6 | ax-resscn 11066 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 7 | 5, 6 | sstrdi 3948 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 8 | cnmptre.7 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅)) | |
| 9 | 1, 4, 7, 8 | cnmpt1res 23561 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝑅 ↾t 𝐴) Cn 𝑅)) |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 11 | 2, 10 | rerest 24690 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → (𝑅 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
| 12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑅 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
| 13 | cnmptre.2 | . . . . . 6 ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) | |
| 14 | 12, 13 | eqtr4di 2782 | . . . . 5 ⊢ (𝜑 → (𝑅 ↾t 𝐴) = 𝐽) |
| 15 | 14 | oveq1d 7364 | . . . 4 ⊢ (𝜑 → ((𝑅 ↾t 𝐴) Cn 𝑅) = (𝐽 Cn 𝑅)) |
| 16 | 9, 15 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅)) |
| 17 | cnmptre.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ 𝐵) | |
| 18 | 17 | fmpttd 7049 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹):𝐴⟶𝐵) |
| 19 | 18 | frnd 6660 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐹) ⊆ 𝐵) |
| 20 | cnmptre.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 21 | 20, 6 | sstrdi 3948 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 22 | cnrest2 23171 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐹) ⊆ 𝐵 ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵)))) | |
| 23 | 3, 19, 21, 22 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵)))) |
| 24 | 16, 23 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵))) |
| 25 | 2, 10 | rerest 24690 | . . . . 5 ⊢ (𝐵 ⊆ ℝ → (𝑅 ↾t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵)) |
| 26 | 20, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵)) |
| 27 | cnmptre.3 | . . . 4 ⊢ 𝐾 = ((topGen‘ran (,)) ↾t 𝐵) | |
| 28 | 26, 27 | eqtr4di 2782 | . . 3 ⊢ (𝜑 → (𝑅 ↾t 𝐵) = 𝐾) |
| 29 | 28 | oveq2d 7365 | . 2 ⊢ (𝜑 → (𝐽 Cn (𝑅 ↾t 𝐵)) = (𝐽 Cn 𝐾)) |
| 30 | 24, 29 | eleqtrd 2830 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ↦ cmpt 5173 ran crn 5620 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 (,)cioo 13248 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21261 TopOnctopon 22795 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cn 23112 df-xms 24206 df-ms 24207 |
| This theorem is referenced by: iirevcn 24822 iihalf1cn 24824 iihalf1cnOLD 24825 iihalf2cn 24827 iihalf2cnOLD 24828 pcoass 24922 |
| Copyright terms: Public domain | W3C validator |