Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmptre | Structured version Visualization version GIF version |
Description: Lemma for iirevcn 24199 and related functions. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmptre.1 | ⊢ 𝑅 = (TopOpen‘ℂfld) |
cnmptre.2 | ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) |
cnmptre.3 | ⊢ 𝐾 = ((topGen‘ran (,)) ↾t 𝐵) |
cnmptre.4 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
cnmptre.5 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
cnmptre.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ 𝐵) |
cnmptre.7 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅)) |
Ref | Expression |
---|---|
cnmptre | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ (𝑅 ↾t 𝐴) = (𝑅 ↾t 𝐴) | |
2 | cnmptre.1 | . . . . . . 7 ⊢ 𝑅 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 24052 | . . . . . 6 ⊢ 𝑅 ∈ (TopOn‘ℂ) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (TopOn‘ℂ)) |
5 | cnmptre.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
6 | ax-resscn 11034 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstrdi 3948 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
8 | cnmptre.7 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅)) | |
9 | 1, 4, 7, 8 | cnmpt1res 22933 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝑅 ↾t 𝐴) Cn 𝑅)) |
10 | eqid 2737 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
11 | 2, 10 | rerest 24073 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → (𝑅 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑅 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
13 | cnmptre.2 | . . . . . 6 ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) | |
14 | 12, 13 | eqtr4di 2795 | . . . . 5 ⊢ (𝜑 → (𝑅 ↾t 𝐴) = 𝐽) |
15 | 14 | oveq1d 7357 | . . . 4 ⊢ (𝜑 → ((𝑅 ↾t 𝐴) Cn 𝑅) = (𝐽 Cn 𝑅)) |
16 | 9, 15 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅)) |
17 | cnmptre.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ 𝐵) | |
18 | 17 | fmpttd 7050 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹):𝐴⟶𝐵) |
19 | 18 | frnd 6664 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐹) ⊆ 𝐵) |
20 | cnmptre.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
21 | 20, 6 | sstrdi 3948 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
22 | cnrest2 22543 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐹) ⊆ 𝐵 ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵)))) | |
23 | 3, 19, 21, 22 | mp3an2i 1466 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵)))) |
24 | 16, 23 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵))) |
25 | 2, 10 | rerest 24073 | . . . . 5 ⊢ (𝐵 ⊆ ℝ → (𝑅 ↾t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵)) |
26 | 20, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵)) |
27 | cnmptre.3 | . . . 4 ⊢ 𝐾 = ((topGen‘ran (,)) ↾t 𝐵) | |
28 | 26, 27 | eqtr4di 2795 | . . 3 ⊢ (𝜑 → (𝑅 ↾t 𝐵) = 𝐾) |
29 | 28 | oveq2d 7358 | . 2 ⊢ (𝜑 → (𝐽 Cn (𝑅 ↾t 𝐵)) = (𝐽 Cn 𝐾)) |
30 | 24, 29 | eleqtrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ⊆ wss 3902 ↦ cmpt 5180 ran crn 5626 ‘cfv 6484 (class class class)co 7342 ℂcc 10975 ℝcr 10976 (,)cioo 13185 ↾t crest 17229 TopOpenctopn 17230 topGenctg 17246 ℂfldccnfld 20703 TopOnctopon 22165 Cn ccn 22481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fi 9273 df-sup 9304 df-inf 9305 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-q 12795 df-rp 12837 df-xneg 12954 df-xadd 12955 df-xmul 12956 df-ioo 13189 df-fz 13346 df-seq 13828 df-exp 13889 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-struct 16946 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-mulr 17074 df-starv 17075 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-rest 17231 df-topn 17232 df-topgen 17252 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-cnfld 20704 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cn 22484 df-xms 23579 df-ms 23580 |
This theorem is referenced by: iirevcn 24199 iihalf1cn 24201 iihalf2cn 24203 pcoass 24293 |
Copyright terms: Public domain | W3C validator |