Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmptre | Structured version Visualization version GIF version |
Description: Lemma for iirevcn 23999 and related functions. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmptre.1 | ⊢ 𝑅 = (TopOpen‘ℂfld) |
cnmptre.2 | ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) |
cnmptre.3 | ⊢ 𝐾 = ((topGen‘ran (,)) ↾t 𝐵) |
cnmptre.4 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
cnmptre.5 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
cnmptre.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ 𝐵) |
cnmptre.7 | ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅)) |
Ref | Expression |
---|---|
cnmptre | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (𝑅 ↾t 𝐴) = (𝑅 ↾t 𝐴) | |
2 | cnmptre.1 | . . . . . . 7 ⊢ 𝑅 = (TopOpen‘ℂfld) | |
3 | 2 | cnfldtopon 23852 | . . . . . 6 ⊢ 𝑅 ∈ (TopOn‘ℂ) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (TopOn‘ℂ)) |
5 | cnmptre.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
6 | ax-resscn 10859 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
7 | 5, 6 | sstrdi 3929 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
8 | cnmptre.7 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐹) ∈ (𝑅 Cn 𝑅)) | |
9 | 1, 4, 7, 8 | cnmpt1res 22735 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝑅 ↾t 𝐴) Cn 𝑅)) |
10 | eqid 2738 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
11 | 2, 10 | rerest 23873 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → (𝑅 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑅 ↾t 𝐴) = ((topGen‘ran (,)) ↾t 𝐴)) |
13 | cnmptre.2 | . . . . . 6 ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) | |
14 | 12, 13 | eqtr4di 2797 | . . . . 5 ⊢ (𝜑 → (𝑅 ↾t 𝐴) = 𝐽) |
15 | 14 | oveq1d 7270 | . . . 4 ⊢ (𝜑 → ((𝑅 ↾t 𝐴) Cn 𝑅) = (𝐽 Cn 𝑅)) |
16 | 9, 15 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅)) |
17 | cnmptre.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ 𝐵) | |
18 | 17 | fmpttd 6971 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹):𝐴⟶𝐵) |
19 | 18 | frnd 6592 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐹) ⊆ 𝐵) |
20 | cnmptre.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
21 | 20, 6 | sstrdi 3929 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℂ) |
22 | cnrest2 22345 | . . . 4 ⊢ ((𝑅 ∈ (TopOn‘ℂ) ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐹) ⊆ 𝐵 ∧ 𝐵 ⊆ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵)))) | |
23 | 3, 19, 21, 22 | mp3an2i 1464 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝑅) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵)))) |
24 | 16, 23 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn (𝑅 ↾t 𝐵))) |
25 | 2, 10 | rerest 23873 | . . . . 5 ⊢ (𝐵 ⊆ ℝ → (𝑅 ↾t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵)) |
26 | 20, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑅 ↾t 𝐵) = ((topGen‘ran (,)) ↾t 𝐵)) |
27 | cnmptre.3 | . . . 4 ⊢ 𝐾 = ((topGen‘ran (,)) ↾t 𝐵) | |
28 | 26, 27 | eqtr4di 2797 | . . 3 ⊢ (𝜑 → (𝑅 ↾t 𝐵) = 𝐾) |
29 | 28 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝐽 Cn (𝑅 ↾t 𝐵)) = (𝐽 Cn 𝐾)) |
30 | 24, 29 | eleqtrd 2841 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 (,)cioo 13008 ↾t crest 17048 TopOpenctopn 17049 topGenctg 17065 ℂfldccnfld 20510 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-xms 23381 df-ms 23382 |
This theorem is referenced by: iirevcn 23999 iihalf1cn 24001 iihalf2cn 24003 pcoass 24093 |
Copyright terms: Public domain | W3C validator |