![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptre | Structured version Visualization version GIF version |
Description: Lemma for iirevcn 24871 and related functions. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmptre.1 | β’ π = (TopOpenββfld) |
cnmptre.2 | β’ π½ = ((topGenβran (,)) βΎt π΄) |
cnmptre.3 | β’ πΎ = ((topGenβran (,)) βΎt π΅) |
cnmptre.4 | β’ (π β π΄ β β) |
cnmptre.5 | β’ (π β π΅ β β) |
cnmptre.6 | β’ ((π β§ π₯ β π΄) β πΉ β π΅) |
cnmptre.7 | β’ (π β (π₯ β β β¦ πΉ) β (π Cn π )) |
Ref | Expression |
---|---|
cnmptre | β’ (π β (π₯ β π΄ β¦ πΉ) β (π½ Cn πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . 5 β’ (π βΎt π΄) = (π βΎt π΄) | |
2 | cnmptre.1 | . . . . . . 7 β’ π = (TopOpenββfld) | |
3 | 2 | cnfldtopon 24719 | . . . . . 6 β’ π β (TopOnββ) |
4 | 3 | a1i 11 | . . . . 5 β’ (π β π β (TopOnββ)) |
5 | cnmptre.4 | . . . . . 6 β’ (π β π΄ β β) | |
6 | ax-resscn 11203 | . . . . . 6 β’ β β β | |
7 | 5, 6 | sstrdi 3994 | . . . . 5 β’ (π β π΄ β β) |
8 | cnmptre.7 | . . . . 5 β’ (π β (π₯ β β β¦ πΉ) β (π Cn π )) | |
9 | 1, 4, 7, 8 | cnmpt1res 23600 | . . . 4 β’ (π β (π₯ β π΄ β¦ πΉ) β ((π βΎt π΄) Cn π )) |
10 | eqid 2728 | . . . . . . . 8 β’ (topGenβran (,)) = (topGenβran (,)) | |
11 | 2, 10 | rerest 24740 | . . . . . . 7 β’ (π΄ β β β (π βΎt π΄) = ((topGenβran (,)) βΎt π΄)) |
12 | 5, 11 | syl 17 | . . . . . 6 β’ (π β (π βΎt π΄) = ((topGenβran (,)) βΎt π΄)) |
13 | cnmptre.2 | . . . . . 6 β’ π½ = ((topGenβran (,)) βΎt π΄) | |
14 | 12, 13 | eqtr4di 2786 | . . . . 5 β’ (π β (π βΎt π΄) = π½) |
15 | 14 | oveq1d 7441 | . . . 4 β’ (π β ((π βΎt π΄) Cn π ) = (π½ Cn π )) |
16 | 9, 15 | eleqtrd 2831 | . . 3 β’ (π β (π₯ β π΄ β¦ πΉ) β (π½ Cn π )) |
17 | cnmptre.6 | . . . . . 6 β’ ((π β§ π₯ β π΄) β πΉ β π΅) | |
18 | 17 | fmpttd 7130 | . . . . 5 β’ (π β (π₯ β π΄ β¦ πΉ):π΄βΆπ΅) |
19 | 18 | frnd 6735 | . . . 4 β’ (π β ran (π₯ β π΄ β¦ πΉ) β π΅) |
20 | cnmptre.5 | . . . . 5 β’ (π β π΅ β β) | |
21 | 20, 6 | sstrdi 3994 | . . . 4 β’ (π β π΅ β β) |
22 | cnrest2 23210 | . . . 4 β’ ((π β (TopOnββ) β§ ran (π₯ β π΄ β¦ πΉ) β π΅ β§ π΅ β β) β ((π₯ β π΄ β¦ πΉ) β (π½ Cn π ) β (π₯ β π΄ β¦ πΉ) β (π½ Cn (π βΎt π΅)))) | |
23 | 3, 19, 21, 22 | mp3an2i 1462 | . . 3 β’ (π β ((π₯ β π΄ β¦ πΉ) β (π½ Cn π ) β (π₯ β π΄ β¦ πΉ) β (π½ Cn (π βΎt π΅)))) |
24 | 16, 23 | mpbid 231 | . 2 β’ (π β (π₯ β π΄ β¦ πΉ) β (π½ Cn (π βΎt π΅))) |
25 | 2, 10 | rerest 24740 | . . . . 5 β’ (π΅ β β β (π βΎt π΅) = ((topGenβran (,)) βΎt π΅)) |
26 | 20, 25 | syl 17 | . . . 4 β’ (π β (π βΎt π΅) = ((topGenβran (,)) βΎt π΅)) |
27 | cnmptre.3 | . . . 4 β’ πΎ = ((topGenβran (,)) βΎt π΅) | |
28 | 26, 27 | eqtr4di 2786 | . . 3 β’ (π β (π βΎt π΅) = πΎ) |
29 | 28 | oveq2d 7442 | . 2 β’ (π β (π½ Cn (π βΎt π΅)) = (π½ Cn πΎ)) |
30 | 24, 29 | eleqtrd 2831 | 1 β’ (π β (π₯ β π΄ β¦ πΉ) β (π½ Cn πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3949 β¦ cmpt 5235 ran crn 5683 βcfv 6553 (class class class)co 7426 βcc 11144 βcr 11145 (,)cioo 13364 βΎt crest 17409 TopOpenctopn 17410 topGenctg 17426 βfldccnfld 21286 TopOnctopon 22832 Cn ccn 23148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fi 9442 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-fz 13525 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-mulr 17254 df-starv 17255 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-rest 17411 df-topn 17412 df-topgen 17432 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-cn 23151 df-xms 24246 df-ms 24247 |
This theorem is referenced by: iirevcn 24871 iihalf1cn 24873 iihalf1cnOLD 24874 iihalf2cn 24876 iihalf2cnOLD 24877 pcoass 24971 |
Copyright terms: Public domain | W3C validator |