Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1expevenALTV Structured version   Visualization version   GIF version

Theorem m1expevenALTV 47652
Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.)
Assertion
Ref Expression
m1expevenALTV (𝑁 ∈ Even → (-1↑𝑁) = 1)

Proof of Theorem m1expevenALTV
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2734 . . . 4 (𝑛 = 𝑁 → (𝑛 = (2 · 𝑖) ↔ 𝑁 = (2 · 𝑖)))
21rexbidv 3158 . . 3 (𝑛 = 𝑁 → (∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
3 dfeven4 47643 . . 3 Even = {𝑛 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖)}
42, 3elrab2 3665 . 2 (𝑁 ∈ Even ↔ (𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
5 oveq2 7398 . . . . 5 (𝑁 = (2 · 𝑖) → (-1↑𝑁) = (-1↑(2 · 𝑖)))
6 neg1cn 12178 . . . . . . . . 9 -1 ∈ ℂ
76a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → -1 ∈ ℂ)
8 neg1ne0 12180 . . . . . . . . 9 -1 ≠ 0
98a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → -1 ≠ 0)
10 2z 12572 . . . . . . . . 9 2 ∈ ℤ
1110a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → 2 ∈ ℤ)
12 id 22 . . . . . . . 8 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
13 expmulz 14080 . . . . . . . 8 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑖 ∈ ℤ)) → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
147, 9, 11, 12, 13syl22anc 838 . . . . . . 7 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
15 neg1sqe1 14168 . . . . . . . . 9 (-1↑2) = 1
1615oveq1i 7400 . . . . . . . 8 ((-1↑2)↑𝑖) = (1↑𝑖)
17 1exp 14063 . . . . . . . 8 (𝑖 ∈ ℤ → (1↑𝑖) = 1)
1816, 17eqtrid 2777 . . . . . . 7 (𝑖 ∈ ℤ → ((-1↑2)↑𝑖) = 1)
1914, 18eqtrd 2765 . . . . . 6 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = 1)
2019adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (-1↑(2 · 𝑖)) = 1)
215, 20sylan9eqr 2787 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
2221rexlimdva2 3137 . . 3 (𝑁 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1))
2322imp 406 . 2 ((𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
244, 23sylbi 217 1 (𝑁 ∈ Even → (-1↑𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080  -cneg 11413  2c2 12248  cz 12536  cexp 14033   Even ceven 47629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034  df-even 47631
This theorem is referenced by:  m1expoddALTV  47653
  Copyright terms: Public domain W3C validator