Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1expevenALTV Structured version   Visualization version   GIF version

Theorem m1expevenALTV 44532
 Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.)
Assertion
Ref Expression
m1expevenALTV (𝑁 ∈ Even → (-1↑𝑁) = 1)

Proof of Theorem m1expevenALTV
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2762 . . . 4 (𝑛 = 𝑁 → (𝑛 = (2 · 𝑖) ↔ 𝑁 = (2 · 𝑖)))
21rexbidv 3221 . . 3 (𝑛 = 𝑁 → (∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
3 dfeven4 44523 . . 3 Even = {𝑛 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖)}
42, 3elrab2 3605 . 2 (𝑁 ∈ Even ↔ (𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
5 oveq2 7158 . . . . 5 (𝑁 = (2 · 𝑖) → (-1↑𝑁) = (-1↑(2 · 𝑖)))
6 neg1cn 11788 . . . . . . . . 9 -1 ∈ ℂ
76a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → -1 ∈ ℂ)
8 neg1ne0 11790 . . . . . . . . 9 -1 ≠ 0
98a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → -1 ≠ 0)
10 2z 12053 . . . . . . . . 9 2 ∈ ℤ
1110a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → 2 ∈ ℤ)
12 id 22 . . . . . . . 8 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
13 expmulz 13525 . . . . . . . 8 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑖 ∈ ℤ)) → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
147, 9, 11, 12, 13syl22anc 837 . . . . . . 7 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
15 neg1sqe1 13609 . . . . . . . . 9 (-1↑2) = 1
1615oveq1i 7160 . . . . . . . 8 ((-1↑2)↑𝑖) = (1↑𝑖)
17 1exp 13508 . . . . . . . 8 (𝑖 ∈ ℤ → (1↑𝑖) = 1)
1816, 17syl5eq 2805 . . . . . . 7 (𝑖 ∈ ℤ → ((-1↑2)↑𝑖) = 1)
1914, 18eqtrd 2793 . . . . . 6 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = 1)
2019adantl 485 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (-1↑(2 · 𝑖)) = 1)
215, 20sylan9eqr 2815 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
2221rexlimdva2 3211 . . 3 (𝑁 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1))
2322imp 410 . 2 ((𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
244, 23sylbi 220 1 (𝑁 ∈ Even → (-1↑𝑁) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∃wrex 3071  (class class class)co 7150  ℂcc 10573  0cc0 10575  1c1 10576   · cmul 10580  -cneg 10909  2c2 11729  ℤcz 12020  ↑cexp 13479   Even ceven 44509 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-seq 13419  df-exp 13480  df-even 44511 This theorem is referenced by:  m1expoddALTV  44533
 Copyright terms: Public domain W3C validator