Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  m1expevenALTV Structured version   Visualization version   GIF version

Theorem m1expevenALTV 47634
Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.)
Assertion
Ref Expression
m1expevenALTV (𝑁 ∈ Even → (-1↑𝑁) = 1)

Proof of Theorem m1expevenALTV
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2741 . . . 4 (𝑛 = 𝑁 → (𝑛 = (2 · 𝑖) ↔ 𝑁 = (2 · 𝑖)))
21rexbidv 3179 . . 3 (𝑛 = 𝑁 → (∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
3 dfeven4 47625 . . 3 Even = {𝑛 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖)}
42, 3elrab2 3695 . 2 (𝑁 ∈ Even ↔ (𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)))
5 oveq2 7439 . . . . 5 (𝑁 = (2 · 𝑖) → (-1↑𝑁) = (-1↑(2 · 𝑖)))
6 neg1cn 12380 . . . . . . . . 9 -1 ∈ ℂ
76a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → -1 ∈ ℂ)
8 neg1ne0 12382 . . . . . . . . 9 -1 ≠ 0
98a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → -1 ≠ 0)
10 2z 12649 . . . . . . . . 9 2 ∈ ℤ
1110a1i 11 . . . . . . . 8 (𝑖 ∈ ℤ → 2 ∈ ℤ)
12 id 22 . . . . . . . 8 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
13 expmulz 14149 . . . . . . . 8 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑖 ∈ ℤ)) → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
147, 9, 11, 12, 13syl22anc 839 . . . . . . 7 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖))
15 neg1sqe1 14235 . . . . . . . . 9 (-1↑2) = 1
1615oveq1i 7441 . . . . . . . 8 ((-1↑2)↑𝑖) = (1↑𝑖)
17 1exp 14132 . . . . . . . 8 (𝑖 ∈ ℤ → (1↑𝑖) = 1)
1816, 17eqtrid 2789 . . . . . . 7 (𝑖 ∈ ℤ → ((-1↑2)↑𝑖) = 1)
1914, 18eqtrd 2777 . . . . . 6 (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = 1)
2019adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (-1↑(2 · 𝑖)) = 1)
215, 20sylan9eqr 2799 . . . 4 (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
2221rexlimdva2 3157 . . 3 (𝑁 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1))
2322imp 406 . 2 ((𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1)
244, 23sylbi 217 1 (𝑁 ∈ Even → (-1↑𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   · cmul 11160  -cneg 11493  2c2 12321  cz 12613  cexp 14102   Even ceven 47611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103  df-even 47613
This theorem is referenced by:  m1expoddALTV  47635
  Copyright terms: Public domain W3C validator