![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > m1expevenALTV | Structured version Visualization version GIF version |
Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
Ref | Expression |
---|---|
m1expevenALTV | ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 = (2 · 𝑖) ↔ 𝑁 = (2 · 𝑖))) | |
2 | 1 | rexbidv 3185 | . . 3 ⊢ (𝑛 = 𝑁 → (∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖))) |
3 | dfeven4 47512 | . . 3 ⊢ Even = {𝑛 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖)} | |
4 | 2, 3 | elrab2 3711 | . 2 ⊢ (𝑁 ∈ Even ↔ (𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖))) |
5 | oveq2 7456 | . . . . 5 ⊢ (𝑁 = (2 · 𝑖) → (-1↑𝑁) = (-1↑(2 · 𝑖))) | |
6 | neg1cn 12407 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
7 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → -1 ∈ ℂ) |
8 | neg1ne0 12409 | . . . . . . . . 9 ⊢ -1 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → -1 ≠ 0) |
10 | 2z 12675 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → 2 ∈ ℤ) |
12 | id 22 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → 𝑖 ∈ ℤ) | |
13 | expmulz 14159 | . . . . . . . 8 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑖 ∈ ℤ)) → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖)) | |
14 | 7, 9, 11, 12, 13 | syl22anc 838 | . . . . . . 7 ⊢ (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖)) |
15 | neg1sqe1 14245 | . . . . . . . . 9 ⊢ (-1↑2) = 1 | |
16 | 15 | oveq1i 7458 | . . . . . . . 8 ⊢ ((-1↑2)↑𝑖) = (1↑𝑖) |
17 | 1exp 14142 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (1↑𝑖) = 1) | |
18 | 16, 17 | eqtrid 2792 | . . . . . . 7 ⊢ (𝑖 ∈ ℤ → ((-1↑2)↑𝑖) = 1) |
19 | 14, 18 | eqtrd 2780 | . . . . . 6 ⊢ (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = 1) |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (-1↑(2 · 𝑖)) = 1) |
21 | 5, 20 | sylan9eqr 2802 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1) |
22 | 21 | rexlimdva2 3163 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1)) |
23 | 22 | imp 406 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1) |
24 | 4, 23 | sylbi 217 | 1 ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 -cneg 11521 2c2 12348 ℤcz 12639 ↑cexp 14112 Even ceven 47498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 df-even 47500 |
This theorem is referenced by: m1expoddALTV 47522 |
Copyright terms: Public domain | W3C validator |