Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > m1expevenALTV | Structured version Visualization version GIF version |
Description: Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
Ref | Expression |
---|---|
m1expevenALTV | ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2762 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 = (2 · 𝑖) ↔ 𝑁 = (2 · 𝑖))) | |
2 | 1 | rexbidv 3221 | . . 3 ⊢ (𝑛 = 𝑁 → (∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖))) |
3 | dfeven4 44523 | . . 3 ⊢ Even = {𝑛 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑛 = (2 · 𝑖)} | |
4 | 2, 3 | elrab2 3605 | . 2 ⊢ (𝑁 ∈ Even ↔ (𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖))) |
5 | oveq2 7158 | . . . . 5 ⊢ (𝑁 = (2 · 𝑖) → (-1↑𝑁) = (-1↑(2 · 𝑖))) | |
6 | neg1cn 11788 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
7 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → -1 ∈ ℂ) |
8 | neg1ne0 11790 | . . . . . . . . 9 ⊢ -1 ≠ 0 | |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → -1 ≠ 0) |
10 | 2z 12053 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
11 | 10 | a1i 11 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → 2 ∈ ℤ) |
12 | id 22 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → 𝑖 ∈ ℤ) | |
13 | expmulz 13525 | . . . . . . . 8 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ 𝑖 ∈ ℤ)) → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖)) | |
14 | 7, 9, 11, 12, 13 | syl22anc 837 | . . . . . . 7 ⊢ (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = ((-1↑2)↑𝑖)) |
15 | neg1sqe1 13609 | . . . . . . . . 9 ⊢ (-1↑2) = 1 | |
16 | 15 | oveq1i 7160 | . . . . . . . 8 ⊢ ((-1↑2)↑𝑖) = (1↑𝑖) |
17 | 1exp 13508 | . . . . . . . 8 ⊢ (𝑖 ∈ ℤ → (1↑𝑖) = 1) | |
18 | 16, 17 | syl5eq 2805 | . . . . . . 7 ⊢ (𝑖 ∈ ℤ → ((-1↑2)↑𝑖) = 1) |
19 | 14, 18 | eqtrd 2793 | . . . . . 6 ⊢ (𝑖 ∈ ℤ → (-1↑(2 · 𝑖)) = 1) |
20 | 19 | adantl 485 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (-1↑(2 · 𝑖)) = 1) |
21 | 5, 20 | sylan9eqr 2815 | . . . 4 ⊢ (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1) |
22 | 21 | rexlimdva2 3211 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖) → (-1↑𝑁) = 1)) |
23 | 22 | imp 410 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝑁 = (2 · 𝑖)) → (-1↑𝑁) = 1) |
24 | 4, 23 | sylbi 220 | 1 ⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 (class class class)co 7150 ℂcc 10573 0cc0 10575 1c1 10576 · cmul 10580 -cneg 10909 2c2 11729 ℤcz 12020 ↑cexp 13479 Even ceven 44509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-seq 13419 df-exp 13480 df-even 44511 |
This theorem is referenced by: m1expoddALTV 44533 |
Copyright terms: Public domain | W3C validator |