MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znegscl Structured version   Visualization version   GIF version

Theorem znegscl 28280
Description: The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
znegscl (𝐴 ∈ ℤs → ( -us𝐴) ∈ ℤs)

Proof of Theorem znegscl
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsno 28217 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
21adantr 480 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑛 No )
3 nnsno 28217 . . . . . . 7 (𝑚 ∈ ℕs𝑚 No )
43adantl 481 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑚 No )
52, 4negsubsdi2d 27984 . . . . 5 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛))
6 fveqeq2 6867 . . . . 5 (𝐴 = (𝑛 -s 𝑚) → (( -us𝐴) = (𝑚 -s 𝑛) ↔ ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛)))
75, 6syl5ibrcom 247 . . . 4 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝐴 = (𝑛 -s 𝑚) → ( -us𝐴) = (𝑚 -s 𝑛)))
87reximdva 3146 . . 3 (𝑛 ∈ ℕs → (∃𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → ∃𝑚 ∈ ℕs ( -us𝐴) = (𝑚 -s 𝑛)))
98reximia 3064 . 2 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs ( -us𝐴) = (𝑚 -s 𝑛))
10 elzs 28272 . 2 (𝐴 ∈ ℤs ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
11 elzs 28272 . . 3 (( -us𝐴) ∈ ℤs ↔ ∃𝑚 ∈ ℕs𝑛 ∈ ℕs ( -us𝐴) = (𝑚 -s 𝑛))
12 rexcom 3266 . . 3 (∃𝑚 ∈ ℕs𝑛 ∈ ℕs ( -us𝐴) = (𝑚 -s 𝑛) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs ( -us𝐴) = (𝑚 -s 𝑛))
1311, 12bitri 275 . 2 (( -us𝐴) ∈ ℤs ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs ( -us𝐴) = (𝑚 -s 𝑛))
149, 10, 133imtr4i 292 1 (𝐴 ∈ ℤs → ( -us𝐴) ∈ ℤs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cfv 6511  (class class class)co 7387   No csur 27551   -us cnegs 27925   -s csubs 27926  scnns 28207  sczs 28266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-n0s 28208  df-nns 28209  df-zs 28267
This theorem is referenced by:  znegscld  28281  zs12negscl  28340
  Copyright terms: Public domain W3C validator