![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofsubeq0 | Structured version Visualization version GIF version |
Description: Function analogue of subeq0 10649. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofsubeq0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘𝑓 − 𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1128 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
2 | 1 | ffnd 6292 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
3 | simp3 1129 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ) | |
4 | 3 | ffnd 6292 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴) |
5 | simp1 1127 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) | |
6 | inidm 4042 | . . . . . 6 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | eqidd 2778 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
8 | eqidd 2778 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
9 | 2, 4, 5, 5, 6, 7, 8 | ofval 7183 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
10 | c0ex 10370 | . . . . . . 7 ⊢ 0 ∈ V | |
11 | 10 | fvconst2 6741 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
12 | 11 | adantl 475 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
13 | 9, 12 | eqeq12d 2792 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) = 0)) |
14 | 1 | ffvelrnda 6623 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
15 | 3 | ffvelrnda 6623 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℂ) |
16 | 14, 15 | subeq0ad 10744 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝑥) − (𝐺‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
17 | 13, 16 | bitrd 271 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
18 | 17 | ralbidva 3166 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (∀𝑥 ∈ 𝐴 ((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
19 | 2, 4, 5, 5, 6 | offn 7185 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘𝑓 − 𝐺) Fn 𝐴) |
20 | 10 | fconst 6341 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶{0} |
21 | ffn 6291 | . . . 4 ⊢ ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴) | |
22 | 20, 21 | ax-mp 5 | . . 3 ⊢ (𝐴 × {0}) Fn 𝐴 |
23 | eqfnfv 6574 | . . 3 ⊢ (((𝐹 ∘𝑓 − 𝐺) Fn 𝐴 ∧ (𝐴 × {0}) Fn 𝐴) → ((𝐹 ∘𝑓 − 𝐺) = (𝐴 × {0}) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥))) | |
24 | 19, 22, 23 | sylancl 580 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘𝑓 − 𝐺) = (𝐴 × {0}) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘𝑓 − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥))) |
25 | eqfnfv 6574 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
26 | 2, 4, 25 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
27 | 18, 24, 26 | 3bitr4d 303 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘𝑓 − 𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ∀wral 3089 {csn 4397 × cxp 5353 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ∘𝑓 cof 7172 ℂcc 10270 0cc0 10272 − cmin 10606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 |
This theorem is referenced by: psrridm 19801 dv11cn 24201 coeeulem 24417 plydiveu 24490 facth 24498 quotcan 24501 plyexmo 24505 mpaaeu 38661 |
Copyright terms: Public domain | W3C validator |