Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofsubeq0 | Structured version Visualization version GIF version |
Description: Function analogue of subeq0 11177. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofsubeq0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘f − 𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
2 | 1 | ffnd 6585 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
3 | simp3 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ) | |
4 | 3 | ffnd 6585 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴) |
5 | simp1 1134 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) | |
6 | inidm 4149 | . . . . . 6 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | eqidd 2739 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
8 | eqidd 2739 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
9 | 2, 4, 5, 5, 6, 7, 8 | ofval 7522 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
10 | c0ex 10900 | . . . . . . 7 ⊢ 0 ∈ V | |
11 | 10 | fvconst2 7061 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
12 | 11 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
13 | 9, 12 | eqeq12d 2754 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) = 0)) |
14 | 1 | ffvelrnda 6943 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
15 | 3 | ffvelrnda 6943 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℂ) |
16 | 14, 15 | subeq0ad 11272 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝑥) − (𝐺‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
17 | 13, 16 | bitrd 278 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
18 | 17 | ralbidva 3119 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (∀𝑥 ∈ 𝐴 ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
19 | 2, 4, 5, 5, 6 | offn 7524 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘f − 𝐺) Fn 𝐴) |
20 | 10 | fconst 6644 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶{0} |
21 | ffn 6584 | . . . 4 ⊢ ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴) | |
22 | 20, 21 | ax-mp 5 | . . 3 ⊢ (𝐴 × {0}) Fn 𝐴 |
23 | eqfnfv 6891 | . . 3 ⊢ (((𝐹 ∘f − 𝐺) Fn 𝐴 ∧ (𝐴 × {0}) Fn 𝐴) → ((𝐹 ∘f − 𝐺) = (𝐴 × {0}) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥))) | |
24 | 19, 22, 23 | sylancl 585 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘f − 𝐺) = (𝐴 × {0}) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥))) |
25 | eqfnfv 6891 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
26 | 2, 4, 25 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
27 | 18, 24, 26 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹 ∘f − 𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {csn 4558 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 0cc0 10802 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 |
This theorem is referenced by: psrridm 21083 dv11cn 25070 coeeulem 25290 plydiveu 25363 facth 25371 quotcan 25374 plyexmo 25378 mpaaeu 40891 |
Copyright terms: Public domain | W3C validator |