MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubeq0 Structured version   Visualization version   GIF version

Theorem ofsubeq0 11661
Description: Function analogue of subeq0 10940. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubeq0 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺))

Proof of Theorem ofsubeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
21ffnd 6497 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
3 simp3 1136 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
43ffnd 6497 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
5 simp1 1134 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
6 inidm 4124 . . . . . 6 (𝐴𝐴) = 𝐴
7 eqidd 2760 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
8 eqidd 2760 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
92, 4, 5, 5, 6, 7, 8ofval 7413 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
10 c0ex 10663 . . . . . . 7 0 ∈ V
1110fvconst2 6955 . . . . . 6 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1211adantl 486 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
139, 12eqeq12d 2775 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) = 0))
141ffvelrnda 6840 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
153ffvelrnda 6840 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1614, 15subeq0ad 11035 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) − (𝐺𝑥)) = 0 ↔ (𝐹𝑥) = (𝐺𝑥)))
1713, 16bitrd 282 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
1817ralbidva 3126 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (∀𝑥𝐴 ((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
192, 4, 5, 5, 6offn 7415 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f𝐺) Fn 𝐴)
2010fconst 6548 . . . 4 (𝐴 × {0}):𝐴⟶{0}
21 ffn 6496 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴)
2220, 21ax-mp 5 . . 3 (𝐴 × {0}) Fn 𝐴
23 eqfnfv 6791 . . 3 (((𝐹f𝐺) Fn 𝐴 ∧ (𝐴 × {0}) Fn 𝐴) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ ∀𝑥𝐴 ((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥)))
2419, 22, 23sylancl 590 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ ∀𝑥𝐴 ((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥)))
25 eqfnfv 6791 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
262, 4, 25syl2anc 588 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
2718, 24, 263bitr4d 315 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wral 3071  {csn 4520   × cxp 5520   Fn wfn 6328  wf 6329  cfv 6333  (class class class)co 7148  f cof 7401  cc 10563  0cc0 10565  cmin 10898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-po 5441  df-so 5442  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-pnf 10705  df-mnf 10706  df-ltxr 10708  df-sub 10900
This theorem is referenced by:  psrridm  20722  dv11cn  24690  coeeulem  24910  plydiveu  24983  facth  24991  quotcan  24994  plyexmo  24998  mpaaeu  40457
  Copyright terms: Public domain W3C validator