MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofsubeq0 Structured version   Visualization version   GIF version

Theorem ofsubeq0 11622
Description: Function analogue of subeq0 10901. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofsubeq0 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺))

Proof of Theorem ofsubeq0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
21ffnd 6488 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
3 simp3 1135 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
43ffnd 6488 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
5 simp1 1133 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
6 inidm 4145 . . . . . 6 (𝐴𝐴) = 𝐴
7 eqidd 2799 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
8 eqidd 2799 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
92, 4, 5, 5, 6, 7, 8ofval 7398 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
10 c0ex 10624 . . . . . . 7 0 ∈ V
1110fvconst2 6943 . . . . . 6 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
1211adantl 485 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
139, 12eqeq12d 2814 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) = 0))
141ffvelrnda 6828 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
153ffvelrnda 6828 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1614, 15subeq0ad 10996 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) − (𝐺𝑥)) = 0 ↔ (𝐹𝑥) = (𝐺𝑥)))
1713, 16bitrd 282 . . 3 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ (𝐹𝑥) = (𝐺𝑥)))
1817ralbidva 3161 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (∀𝑥𝐴 ((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
192, 4, 5, 5, 6offn 7400 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f𝐺) Fn 𝐴)
2010fconst 6539 . . . 4 (𝐴 × {0}):𝐴⟶{0}
21 ffn 6487 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → (𝐴 × {0}) Fn 𝐴)
2220, 21ax-mp 5 . . 3 (𝐴 × {0}) Fn 𝐴
23 eqfnfv 6779 . . 3 (((𝐹f𝐺) Fn 𝐴 ∧ (𝐴 × {0}) Fn 𝐴) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ ∀𝑥𝐴 ((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥)))
2419, 22, 23sylancl 589 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ ∀𝑥𝐴 ((𝐹f𝐺)‘𝑥) = ((𝐴 × {0})‘𝑥)))
25 eqfnfv 6779 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
262, 4, 25syl2anc 587 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
2718, 24, 263bitr4d 314 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f𝐺) = (𝐴 × {0}) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {csn 4525   × cxp 5517   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cc 10524  0cc0 10526  cmin 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861
This theorem is referenced by:  psrridm  20642  dv11cn  24604  coeeulem  24821  plydiveu  24894  facth  24902  quotcan  24905  plyexmo  24909  mpaaeu  40094
  Copyright terms: Public domain W3C validator