Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imacrhmcl Structured version   Visualization version   GIF version

Theorem imacrhmcl 42537
Description: The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.)
Hypotheses
Ref Expression
imacrhmcl.c 𝐶 = (𝑁s (𝐹𝑆))
imacrhmcl.h (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
imacrhmcl.m (𝜑𝑀 ∈ CRing)
imacrhmcl.s (𝜑𝑆 ∈ (SubRing‘𝑀))
Assertion
Ref Expression
imacrhmcl (𝜑𝐶 ∈ CRing)

Proof of Theorem imacrhmcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imacrhmcl.h . . . 4 (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
2 imacrhmcl.s . . . 4 (𝜑𝑆 ∈ (SubRing‘𝑀))
3 rhmima 20564 . . . 4 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ (SubRing‘𝑁))
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐹𝑆) ∈ (SubRing‘𝑁))
5 imacrhmcl.c . . . 4 𝐶 = (𝑁s (𝐹𝑆))
65subrgring 20534 . . 3 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 𝐶 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐶 ∈ Ring)
85ressbasss2 17262 . . . . . 6 (Base‘𝐶) ⊆ (𝐹𝑆)
98sseli 3954 . . . . 5 (𝑥 ∈ (Base‘𝐶) → 𝑥 ∈ (𝐹𝑆))
108sseli 3954 . . . . 5 (𝑦 ∈ (Base‘𝐶) → 𝑦 ∈ (𝐹𝑆))
119, 10anim12i 613 . . . 4 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆)))
12 eqid 2735 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
13 eqid 2735 . . . . . . . . . 10 (Base‘𝑁) = (Base‘𝑁)
1412, 13rhmf 20445 . . . . . . . . 9 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
151, 14syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝑀)⟶(Base‘𝑁))
1615ffund 6710 . . . . . . 7 (𝜑 → Fun 𝐹)
17 fvelima 6944 . . . . . . 7 ((Fun 𝐹𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1816, 17sylan 580 . . . . . 6 ((𝜑𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1918adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
20 fvelima 6944 . . . . . . . . 9 ((Fun 𝐹𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2116, 20sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2221adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2322adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
24 imacrhmcl.m . . . . . . . . . . 11 (𝜑𝑀 ∈ CRing)
2524ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑀 ∈ CRing)
2612subrgss 20532 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
272, 26syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (Base‘𝑀))
2827ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑆 ⊆ (Base‘𝑀))
29 simplrl 776 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎𝑆)
3028, 29sseldd 3959 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎 ∈ (Base‘𝑀))
31 simprl 770 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏𝑆)
3228, 31sseldd 3959 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏 ∈ (Base‘𝑀))
33 eqid 2735 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
3412, 33crngcom 20211 . . . . . . . . . 10 ((𝑀 ∈ CRing ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3525, 30, 32, 34syl3anc 1373 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3635fveq2d 6880 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = (𝐹‘(𝑏(.r𝑀)𝑎)))
371ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝐹 ∈ (𝑀 RingHom 𝑁))
38 eqid 2735 . . . . . . . . . 10 (.r𝑁) = (.r𝑁)
3912, 33, 38rhmmul 20446 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4037, 30, 32, 39syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4112, 33, 38rhmmul 20446 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4237, 32, 30, 41syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4336, 40, 423eqtr3d 2778 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
44 imaexg 7909 . . . . . . . . . 10 (𝐹 ∈ (𝑀 RingHom 𝑁) → (𝐹𝑆) ∈ V)
455, 38ressmulr 17321 . . . . . . . . . 10 ((𝐹𝑆) ∈ V → (.r𝑁) = (.r𝐶))
461, 44, 453syl 18 . . . . . . . . 9 (𝜑 → (.r𝑁) = (.r𝐶))
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (.r𝑁) = (.r𝐶))
48 simplrr 777 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑎) = 𝑥)
49 simprr 772 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑏) = 𝑦)
5047, 48, 49oveq123d 7426 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = (𝑥(.r𝐶)𝑦))
5147, 49, 48oveq123d 7426 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑏)(.r𝑁)(𝐹𝑎)) = (𝑦(.r𝐶)𝑥))
5243, 50, 513eqtr3d 2778 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5323, 52rexlimddv 3147 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5419, 53rexlimddv 3147 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5511, 54sylan2 593 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5655ralrimivva 3187 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
57 eqid 2735 . . 3 (Base‘𝐶) = (Base‘𝐶)
58 eqid 2735 . . 3 (.r𝐶) = (.r𝐶)
5957, 58iscrng2 20212 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
607, 56, 59sylanbrc 583 1 (𝜑𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926  cima 5657  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  .rcmulr 17272  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  SubRingcsubrg 20529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-subg 19106  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530
This theorem is referenced by:  riccrng1  42544
  Copyright terms: Public domain W3C validator