Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imacrhmcl Structured version   Visualization version   GIF version

Theorem imacrhmcl 42509
Description: The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.)
Hypotheses
Ref Expression
imacrhmcl.c 𝐶 = (𝑁s (𝐹𝑆))
imacrhmcl.h (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
imacrhmcl.m (𝜑𝑀 ∈ CRing)
imacrhmcl.s (𝜑𝑆 ∈ (SubRing‘𝑀))
Assertion
Ref Expression
imacrhmcl (𝜑𝐶 ∈ CRing)

Proof of Theorem imacrhmcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imacrhmcl.h . . . 4 (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
2 imacrhmcl.s . . . 4 (𝜑𝑆 ∈ (SubRing‘𝑀))
3 rhmima 20520 . . . 4 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ (SubRing‘𝑁))
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐹𝑆) ∈ (SubRing‘𝑁))
5 imacrhmcl.c . . . 4 𝐶 = (𝑁s (𝐹𝑆))
65subrgring 20490 . . 3 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 𝐶 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐶 ∈ Ring)
85ressbasss2 17218 . . . . . 6 (Base‘𝐶) ⊆ (𝐹𝑆)
98sseli 3945 . . . . 5 (𝑥 ∈ (Base‘𝐶) → 𝑥 ∈ (𝐹𝑆))
108sseli 3945 . . . . 5 (𝑦 ∈ (Base‘𝐶) → 𝑦 ∈ (𝐹𝑆))
119, 10anim12i 613 . . . 4 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆)))
12 eqid 2730 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
13 eqid 2730 . . . . . . . . . 10 (Base‘𝑁) = (Base‘𝑁)
1412, 13rhmf 20401 . . . . . . . . 9 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
151, 14syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝑀)⟶(Base‘𝑁))
1615ffund 6695 . . . . . . 7 (𝜑 → Fun 𝐹)
17 fvelima 6929 . . . . . . 7 ((Fun 𝐹𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1816, 17sylan 580 . . . . . 6 ((𝜑𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1918adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
20 fvelima 6929 . . . . . . . . 9 ((Fun 𝐹𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2116, 20sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2221adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2322adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
24 imacrhmcl.m . . . . . . . . . . 11 (𝜑𝑀 ∈ CRing)
2524ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑀 ∈ CRing)
2612subrgss 20488 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
272, 26syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (Base‘𝑀))
2827ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑆 ⊆ (Base‘𝑀))
29 simplrl 776 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎𝑆)
3028, 29sseldd 3950 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎 ∈ (Base‘𝑀))
31 simprl 770 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏𝑆)
3228, 31sseldd 3950 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏 ∈ (Base‘𝑀))
33 eqid 2730 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
3412, 33crngcom 20167 . . . . . . . . . 10 ((𝑀 ∈ CRing ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3525, 30, 32, 34syl3anc 1373 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3635fveq2d 6865 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = (𝐹‘(𝑏(.r𝑀)𝑎)))
371ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝐹 ∈ (𝑀 RingHom 𝑁))
38 eqid 2730 . . . . . . . . . 10 (.r𝑁) = (.r𝑁)
3912, 33, 38rhmmul 20402 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4037, 30, 32, 39syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4112, 33, 38rhmmul 20402 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4237, 32, 30, 41syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4336, 40, 423eqtr3d 2773 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
44 imaexg 7892 . . . . . . . . . 10 (𝐹 ∈ (𝑀 RingHom 𝑁) → (𝐹𝑆) ∈ V)
455, 38ressmulr 17277 . . . . . . . . . 10 ((𝐹𝑆) ∈ V → (.r𝑁) = (.r𝐶))
461, 44, 453syl 18 . . . . . . . . 9 (𝜑 → (.r𝑁) = (.r𝐶))
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (.r𝑁) = (.r𝐶))
48 simplrr 777 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑎) = 𝑥)
49 simprr 772 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑏) = 𝑦)
5047, 48, 49oveq123d 7411 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = (𝑥(.r𝐶)𝑦))
5147, 49, 48oveq123d 7411 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑏)(.r𝑁)(𝐹𝑎)) = (𝑦(.r𝐶)𝑥))
5243, 50, 513eqtr3d 2773 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5323, 52rexlimddv 3141 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5419, 53rexlimddv 3141 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5511, 54sylan2 593 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5655ralrimivva 3181 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
57 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
58 eqid 2730 . . 3 (.r𝐶) = (.r𝐶)
5957, 58iscrng2 20168 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
607, 56, 59sylanbrc 583 1 (𝜑𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  .rcmulr 17228  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  SubRingcsubrg 20485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486
This theorem is referenced by:  riccrng1  42516
  Copyright terms: Public domain W3C validator