Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imacrhmcl Structured version   Visualization version   GIF version

Theorem imacrhmcl 42524
Description: The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.)
Hypotheses
Ref Expression
imacrhmcl.c 𝐶 = (𝑁s (𝐹𝑆))
imacrhmcl.h (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
imacrhmcl.m (𝜑𝑀 ∈ CRing)
imacrhmcl.s (𝜑𝑆 ∈ (SubRing‘𝑀))
Assertion
Ref Expression
imacrhmcl (𝜑𝐶 ∈ CRing)

Proof of Theorem imacrhmcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imacrhmcl.h . . . 4 (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
2 imacrhmcl.s . . . 4 (𝜑𝑆 ∈ (SubRing‘𝑀))
3 rhmima 20604 . . . 4 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ (SubRing‘𝑁))
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐹𝑆) ∈ (SubRing‘𝑁))
5 imacrhmcl.c . . . 4 𝐶 = (𝑁s (𝐹𝑆))
65subrgring 20574 . . 3 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 𝐶 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐶 ∈ Ring)
85ressbasss2 17286 . . . . . 6 (Base‘𝐶) ⊆ (𝐹𝑆)
98sseli 3979 . . . . 5 (𝑥 ∈ (Base‘𝐶) → 𝑥 ∈ (𝐹𝑆))
108sseli 3979 . . . . 5 (𝑦 ∈ (Base‘𝐶) → 𝑦 ∈ (𝐹𝑆))
119, 10anim12i 613 . . . 4 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆)))
12 eqid 2737 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
13 eqid 2737 . . . . . . . . . 10 (Base‘𝑁) = (Base‘𝑁)
1412, 13rhmf 20485 . . . . . . . . 9 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
151, 14syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝑀)⟶(Base‘𝑁))
1615ffund 6740 . . . . . . 7 (𝜑 → Fun 𝐹)
17 fvelima 6974 . . . . . . 7 ((Fun 𝐹𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1816, 17sylan 580 . . . . . 6 ((𝜑𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1918adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
20 fvelima 6974 . . . . . . . . 9 ((Fun 𝐹𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2116, 20sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2221adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2322adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
24 imacrhmcl.m . . . . . . . . . . 11 (𝜑𝑀 ∈ CRing)
2524ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑀 ∈ CRing)
2612subrgss 20572 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
272, 26syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (Base‘𝑀))
2827ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑆 ⊆ (Base‘𝑀))
29 simplrl 777 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎𝑆)
3028, 29sseldd 3984 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎 ∈ (Base‘𝑀))
31 simprl 771 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏𝑆)
3228, 31sseldd 3984 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏 ∈ (Base‘𝑀))
33 eqid 2737 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
3412, 33crngcom 20248 . . . . . . . . . 10 ((𝑀 ∈ CRing ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3525, 30, 32, 34syl3anc 1373 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3635fveq2d 6910 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = (𝐹‘(𝑏(.r𝑀)𝑎)))
371ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝐹 ∈ (𝑀 RingHom 𝑁))
38 eqid 2737 . . . . . . . . . 10 (.r𝑁) = (.r𝑁)
3912, 33, 38rhmmul 20486 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4037, 30, 32, 39syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4112, 33, 38rhmmul 20486 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4237, 32, 30, 41syl3anc 1373 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4336, 40, 423eqtr3d 2785 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
44 imaexg 7935 . . . . . . . . . 10 (𝐹 ∈ (𝑀 RingHom 𝑁) → (𝐹𝑆) ∈ V)
455, 38ressmulr 17351 . . . . . . . . . 10 ((𝐹𝑆) ∈ V → (.r𝑁) = (.r𝐶))
461, 44, 453syl 18 . . . . . . . . 9 (𝜑 → (.r𝑁) = (.r𝐶))
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (.r𝑁) = (.r𝐶))
48 simplrr 778 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑎) = 𝑥)
49 simprr 773 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑏) = 𝑦)
5047, 48, 49oveq123d 7452 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = (𝑥(.r𝐶)𝑦))
5147, 49, 48oveq123d 7452 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑏)(.r𝑁)(𝐹𝑎)) = (𝑦(.r𝐶)𝑥))
5243, 50, 513eqtr3d 2785 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5323, 52rexlimddv 3161 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5419, 53rexlimddv 3161 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5511, 54sylan2 593 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5655ralrimivva 3202 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
57 eqid 2737 . . 3 (Base‘𝐶) = (Base‘𝐶)
58 eqid 2737 . . 3 (.r𝐶) = (.r𝐶)
5957, 58iscrng2 20249 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
607, 56, 59sylanbrc 583 1 (𝜑𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  .rcmulr 17298  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  SubRingcsubrg 20569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-subg 19141  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570
This theorem is referenced by:  riccrng1  42531
  Copyright terms: Public domain W3C validator