Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imacrhmcl Structured version   Visualization version   GIF version

Theorem imacrhmcl 42500
Description: The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.)
Hypotheses
Ref Expression
imacrhmcl.c 𝐶 = (𝑁s (𝐹𝑆))
imacrhmcl.h (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
imacrhmcl.m (𝜑𝑀 ∈ CRing)
imacrhmcl.s (𝜑𝑆 ∈ (SubRing‘𝑀))
Assertion
Ref Expression
imacrhmcl (𝜑𝐶 ∈ CRing)

Proof of Theorem imacrhmcl
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imacrhmcl.h . . . 4 (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
2 imacrhmcl.s . . . 4 (𝜑𝑆 ∈ (SubRing‘𝑀))
3 rhmima 20620 . . . 4 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ (SubRing‘𝑁))
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐹𝑆) ∈ (SubRing‘𝑁))
5 imacrhmcl.c . . . 4 𝐶 = (𝑁s (𝐹𝑆))
65subrgring 20590 . . 3 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 𝐶 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐶 ∈ Ring)
85ressbasss2 17285 . . . . . 6 (Base‘𝐶) ⊆ (𝐹𝑆)
98sseli 3990 . . . . 5 (𝑥 ∈ (Base‘𝐶) → 𝑥 ∈ (𝐹𝑆))
108sseli 3990 . . . . 5 (𝑦 ∈ (Base‘𝐶) → 𝑦 ∈ (𝐹𝑆))
119, 10anim12i 613 . . . 4 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆)))
12 eqid 2734 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
13 eqid 2734 . . . . . . . . . 10 (Base‘𝑁) = (Base‘𝑁)
1412, 13rhmf 20501 . . . . . . . . 9 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
151, 14syl 17 . . . . . . . 8 (𝜑𝐹:(Base‘𝑀)⟶(Base‘𝑁))
1615ffund 6740 . . . . . . 7 (𝜑 → Fun 𝐹)
17 fvelima 6973 . . . . . . 7 ((Fun 𝐹𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1816, 17sylan 580 . . . . . 6 ((𝜑𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
1918adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
20 fvelima 6973 . . . . . . . . 9 ((Fun 𝐹𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2116, 20sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐹𝑆)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2221adantrl 716 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
2322adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ∃𝑏𝑆 (𝐹𝑏) = 𝑦)
24 imacrhmcl.m . . . . . . . . . . 11 (𝜑𝑀 ∈ CRing)
2524ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑀 ∈ CRing)
2612subrgss 20588 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
272, 26syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ (Base‘𝑀))
2827ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑆 ⊆ (Base‘𝑀))
29 simplrl 777 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎𝑆)
3028, 29sseldd 3995 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑎 ∈ (Base‘𝑀))
31 simprl 771 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏𝑆)
3228, 31sseldd 3995 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝑏 ∈ (Base‘𝑀))
33 eqid 2734 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
3412, 33crngcom 20268 . . . . . . . . . 10 ((𝑀 ∈ CRing ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3525, 30, 32, 34syl3anc 1370 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑎(.r𝑀)𝑏) = (𝑏(.r𝑀)𝑎))
3635fveq2d 6910 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = (𝐹‘(𝑏(.r𝑀)𝑎)))
371ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → 𝐹 ∈ (𝑀 RingHom 𝑁))
38 eqid 2734 . . . . . . . . . 10 (.r𝑁) = (.r𝑁)
3912, 33, 38rhmmul 20502 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4037, 30, 32, 39syl3anc 1370 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑎(.r𝑀)𝑏)) = ((𝐹𝑎)(.r𝑁)(𝐹𝑏)))
4112, 33, 38rhmmul 20502 . . . . . . . . 9 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑏 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4237, 32, 30, 41syl3anc 1370 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹‘(𝑏(.r𝑀)𝑎)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
4336, 40, 423eqtr3d 2782 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = ((𝐹𝑏)(.r𝑁)(𝐹𝑎)))
44 imaexg 7935 . . . . . . . . . 10 (𝐹 ∈ (𝑀 RingHom 𝑁) → (𝐹𝑆) ∈ V)
455, 38ressmulr 17352 . . . . . . . . . 10 ((𝐹𝑆) ∈ V → (.r𝑁) = (.r𝐶))
461, 44, 453syl 18 . . . . . . . . 9 (𝜑 → (.r𝑁) = (.r𝐶))
4746ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (.r𝑁) = (.r𝐶))
48 simplrr 778 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑎) = 𝑥)
49 simprr 773 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝐹𝑏) = 𝑦)
5047, 48, 49oveq123d 7451 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑎)(.r𝑁)(𝐹𝑏)) = (𝑥(.r𝐶)𝑦))
5147, 49, 48oveq123d 7451 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → ((𝐹𝑏)(.r𝑁)(𝐹𝑎)) = (𝑦(.r𝐶)𝑥))
5243, 50, 513eqtr3d 2782 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ (𝑏𝑆 ∧ (𝐹𝑏) = 𝑦)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5323, 52rexlimddv 3158 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5419, 53rexlimddv 3158 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐹𝑆) ∧ 𝑦 ∈ (𝐹𝑆))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5511, 54sylan2 593 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
5655ralrimivva 3199 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥))
57 eqid 2734 . . 3 (Base‘𝐶) = (Base‘𝐶)
58 eqid 2734 . . 3 (.r𝐶) = (.r𝐶)
5957, 58iscrng2 20269 . 2 (𝐶 ∈ CRing ↔ (𝐶 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(.r𝐶)𝑦) = (𝑦(.r𝐶)𝑥)))
607, 56, 59sylanbrc 583 1 (𝜑𝐶 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962  cima 5691  Fun wfun 6556  wf 6558  cfv 6562  (class class class)co 7430  Basecbs 17244  s cress 17273  .rcmulr 17298  Ringcrg 20250  CRingccrg 20251   RingHom crh 20485  SubRingcsubrg 20585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-subg 19153  df-ghm 19243  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586
This theorem is referenced by:  riccrng1  42507
  Copyright terms: Public domain W3C validator