Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlewftc Structured version   Visualization version   GIF version

Theorem intlewftc 39997
Description: Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.)
Hypotheses
Ref Expression
intlewftc.1 (𝜑𝐴 ∈ ℝ)
intlewftc.2 (𝜑𝐵 ∈ ℝ)
intlewftc.3 (𝜑𝐴𝐵)
intlewftc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.5 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.6 (𝜑𝐷 = (ℝ D 𝐹))
intlewftc.7 (𝜑𝐸 = (ℝ D 𝐺))
intlewftc.8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.10 (𝜑𝐷 ∈ 𝐿1)
intlewftc.11 (𝜑𝐸 ∈ 𝐿1)
intlewftc.12 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
intlewftc.13 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
intlewftc.14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
intlewftc.15 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
Assertion
Ref Expression
intlewftc (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem intlewftc
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 intlewftc.4 . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2 cncff 23962 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
31, 2syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
4 intlewftc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5 intlewftc.3 . . . . . . 7 (𝜑𝐴𝐵)
64leidd 11471 . . . . . . 7 (𝜑𝐵𝐵)
74, 5, 63jca 1126 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵))
8 intlewftc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 elicc2 13073 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
108, 4, 9syl2anc 583 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
117, 10mpbird 256 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
123, 11ffvelrnd 6944 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
138leidd 11471 . . . . . . 7 (𝜑𝐴𝐴)
148, 13, 53jca 1126 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵))
15 elicc2 13073 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
168, 4, 15syl2anc 583 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
1714, 16mpbird 256 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
183, 17ffvelrnd 6944 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
1912, 18resubcld 11333 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 intlewftc.5 . . . . . 6 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
21 cncff 23962 . . . . . 6 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2220, 21syl 17 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
2322, 11ffvelrnd 6944 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
2422, 17ffvelrnd 6944 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℝ)
2523, 24resubcld 11333 . . 3 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
26 intlewftc.10 . . . . . 6 (𝜑𝐷 ∈ 𝐿1)
27 intlewftc.12 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
2827eleq1d 2823 . . . . . 6 (𝜑 → (𝐷 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1))
2926, 28mpbid 231 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1)
30 intlewftc.11 . . . . . 6 (𝜑𝐸 ∈ 𝐿1)
31 intlewftc.13 . . . . . . 7 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
3231eleq1d 2823 . . . . . 6 (𝜑 → (𝐸 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1))
3330, 32mpbid 231 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1)
34 intlewftc.8 . . . . . . . 8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
35 cncff 23962 . . . . . . . 8 (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐷:(𝐴(,)𝐵)⟶ℝ)
3634, 35syl 17 . . . . . . 7 (𝜑𝐷:(𝐴(,)𝐵)⟶ℝ)
3727feq1d 6569 . . . . . . 7 (𝜑 → (𝐷:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ))
3836, 37mpbid 231 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ)
3938fvmptelrn 6969 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃 ∈ ℝ)
40 intlewftc.9 . . . . . . . 8 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
41 cncff 23962 . . . . . . . 8 (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐸:(𝐴(,)𝐵)⟶ℝ)
4240, 41syl 17 . . . . . . 7 (𝜑𝐸:(𝐴(,)𝐵)⟶ℝ)
4331feq1d 6569 . . . . . . 7 (𝜑 → (𝐸:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ))
4442, 43mpbid 231 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ)
4544fvmptelrn 6969 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑄 ∈ ℝ)
46 intlewftc.14 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
4729, 33, 39, 45, 46itgle 24879 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥)
4839itgmpt 24852 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡)
4927fveq1d 6758 . . . . . . . . . 10 (𝜑 → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5049adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5150eqcomd 2744 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) = (𝐷𝑡))
5251itgeq2dv 24851 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡)
53 intlewftc.6 . . . . . . . . . . 11 (𝜑𝐷 = (ℝ D 𝐹))
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐷 = (ℝ D 𝐹))
5554fveq1d 6758 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((ℝ D 𝐹)‘𝑡))
5655itgeq2dv 24851 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
57 ax-resscn 10859 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
59 fss 6601 . . . . . . . . . . . 12 ((𝐷:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐷:(𝐴(,)𝐵)⟶ℂ)
6036, 58, 59syl2anc 583 . . . . . . . . . . 11 (𝜑𝐷:(𝐴(,)𝐵)⟶ℂ)
61 ssidd 3940 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
62 cncffvrn 23967 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6361, 34, 62syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6460, 63mpbird 256 . . . . . . . . . 10 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ))
6553eleq1d 2823 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
6664, 65mpbid 231 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
6753, 26eqeltrrd 2840 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
68 fss 6601 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
693, 58, 68syl2anc 583 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
70 cncffvrn 23967 . . . . . . . . . . 11 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7161, 1, 70syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7269, 71mpbird 256 . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
738, 4, 5, 66, 67, 72ftc2 25113 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7456, 73eqtrd 2778 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7552, 74eqtrd 2778 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7648, 75eqtrd 2778 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ((𝐹𝐵) − (𝐹𝐴)))
7745itgmpt 24852 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡)
7831adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
7978eqcomd 2744 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) = 𝐸)
8079fveq1d 6758 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) = (𝐸𝑡))
8180itgeq2dv 24851 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
8277, 81eqtrd 2778 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
83 intlewftc.7 . . . . . . . . . 10 (𝜑𝐸 = (ℝ D 𝐺))
8483adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (ℝ D 𝐺))
8584fveq1d 6758 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐸𝑡) = ((ℝ D 𝐺)‘𝑡))
8685itgeq2dv 24851 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡)
87 fss 6601 . . . . . . . . . . . . 13 ((𝐸:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐸:(𝐴(,)𝐵)⟶ℂ)
8842, 58, 87syl2anc 583 . . . . . . . . . . . 12 (𝜑𝐸:(𝐴(,)𝐵)⟶ℂ)
89 cncffvrn 23967 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9061, 40, 89syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9188, 90mpbird 256 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9283eleq1d 2823 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
9391, 92mpbid 231 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9493, 92mpbird 256 . . . . . . . . 9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9594, 92mpbid 231 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9683, 30eqeltrrd 2840 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
97 fss 6601 . . . . . . . . . 10 ((𝐺:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
9822, 58, 97syl2anc 583 . . . . . . . . 9 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
99 cncffvrn 23967 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10061, 20, 99syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10198, 100mpbird 256 . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1028, 4, 5, 95, 96, 101ftc2 25113 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10386, 102eqtrd 2778 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10482, 103eqtrd 2778 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
10576, 104breq12d 5083 . . . 4 (𝜑 → (∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥 ↔ ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴))))
10647, 105mpbid 231 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴)))
107 intlewftc.15 . . 3 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
10819, 18, 25, 24, 106, 107le2addd 11524 . 2 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)))
10957, 12sselid 3915 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℂ)
11057, 18sselid 3915 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℂ)
111109, 110npcand 11266 . . 3 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) = (𝐹𝐵))
11257, 23sselid 3915 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℂ)
11357, 24sselid 3915 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
114112, 113npcand 11266 . . 3 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) = (𝐺𝐵))
115111, 114breq12d 5083 . 2 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) ↔ (𝐹𝐵) ≤ (𝐺𝐵)))
116108, 115mpbid 231 1 (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801   + caddc 10805  cle 10941  cmin 11135  (,)cioo 13008  [,]cicc 13011  cnccncf 23945  𝐿1cibl 24686  citg 24687   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator