Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlewftc Structured version   Visualization version   GIF version

Theorem intlewftc 39411
 Description: Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.)
Hypotheses
Ref Expression
intlewftc.1 (𝜑𝐴 ∈ ℝ)
intlewftc.2 (𝜑𝐵 ∈ ℝ)
intlewftc.3 (𝜑𝐴𝐵)
intlewftc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.5 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.6 (𝜑𝐷 = (ℝ D 𝐹))
intlewftc.7 (𝜑𝐸 = (ℝ D 𝐺))
intlewftc.8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.10 (𝜑𝐷 ∈ 𝐿1)
intlewftc.11 (𝜑𝐸 ∈ 𝐿1)
intlewftc.12 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
intlewftc.13 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
intlewftc.14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
intlewftc.15 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
Assertion
Ref Expression
intlewftc (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem intlewftc
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 intlewftc.4 . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2 cncff 23536 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
31, 2syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
4 intlewftc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5 intlewftc.3 . . . . . . 7 (𝜑𝐴𝐵)
64leidd 11210 . . . . . . 7 (𝜑𝐵𝐵)
74, 5, 63jca 1125 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵))
8 intlewftc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 elicc2 12807 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
108, 4, 9syl2anc 587 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
117, 10mpbird 260 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
123, 11ffvelrnd 6836 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
138leidd 11210 . . . . . . 7 (𝜑𝐴𝐴)
148, 13, 53jca 1125 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵))
15 elicc2 12807 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
168, 4, 15syl2anc 587 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
1714, 16mpbird 260 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
183, 17ffvelrnd 6836 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
1912, 18resubcld 11072 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 intlewftc.5 . . . . . 6 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
21 cncff 23536 . . . . . 6 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2220, 21syl 17 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
2322, 11ffvelrnd 6836 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
2422, 17ffvelrnd 6836 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℝ)
2523, 24resubcld 11072 . . 3 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
26 intlewftc.10 . . . . . 6 (𝜑𝐷 ∈ 𝐿1)
27 intlewftc.12 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
2827eleq1d 2874 . . . . . 6 (𝜑 → (𝐷 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1))
2926, 28mpbid 235 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1)
30 intlewftc.11 . . . . . 6 (𝜑𝐸 ∈ 𝐿1)
31 intlewftc.13 . . . . . . 7 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
3231eleq1d 2874 . . . . . 6 (𝜑 → (𝐸 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1))
3330, 32mpbid 235 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1)
34 intlewftc.8 . . . . . . . 8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
35 cncff 23536 . . . . . . . 8 (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐷:(𝐴(,)𝐵)⟶ℝ)
3634, 35syl 17 . . . . . . 7 (𝜑𝐷:(𝐴(,)𝐵)⟶ℝ)
3727feq1d 6477 . . . . . . 7 (𝜑 → (𝐷:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ))
3836, 37mpbid 235 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ)
3938fvmptelrn 6861 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃 ∈ ℝ)
40 intlewftc.9 . . . . . . . 8 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
41 cncff 23536 . . . . . . . 8 (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐸:(𝐴(,)𝐵)⟶ℝ)
4240, 41syl 17 . . . . . . 7 (𝜑𝐸:(𝐴(,)𝐵)⟶ℝ)
4331feq1d 6477 . . . . . . 7 (𝜑 → (𝐸:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ))
4442, 43mpbid 235 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ)
4544fvmptelrn 6861 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑄 ∈ ℝ)
46 intlewftc.14 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
4729, 33, 39, 45, 46itgle 24451 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥)
4839itgmpt 24424 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡)
4927fveq1d 6654 . . . . . . . . . 10 (𝜑 → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5049adantr 484 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5150eqcomd 2804 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) = (𝐷𝑡))
5251itgeq2dv 24423 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡)
53 intlewftc.6 . . . . . . . . . . 11 (𝜑𝐷 = (ℝ D 𝐹))
5453adantr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐷 = (ℝ D 𝐹))
5554fveq1d 6654 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((ℝ D 𝐹)‘𝑡))
5655itgeq2dv 24423 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
57 ax-resscn 10598 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
59 fss 6506 . . . . . . . . . . . 12 ((𝐷:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐷:(𝐴(,)𝐵)⟶ℂ)
6036, 58, 59syl2anc 587 . . . . . . . . . . 11 (𝜑𝐷:(𝐴(,)𝐵)⟶ℂ)
61 ssidd 3939 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
62 cncffvrn 23541 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6361, 34, 62syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6460, 63mpbird 260 . . . . . . . . . 10 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ))
6553eleq1d 2874 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
6664, 65mpbid 235 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
6753, 26eqeltrrd 2891 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
68 fss 6506 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
693, 58, 68syl2anc 587 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
70 cncffvrn 23541 . . . . . . . . . . 11 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7161, 1, 70syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7269, 71mpbird 260 . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
738, 4, 5, 66, 67, 72ftc2 24685 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7456, 73eqtrd 2833 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7552, 74eqtrd 2833 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7648, 75eqtrd 2833 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ((𝐹𝐵) − (𝐹𝐴)))
7745itgmpt 24424 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡)
7831adantr 484 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
7978eqcomd 2804 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) = 𝐸)
8079fveq1d 6654 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) = (𝐸𝑡))
8180itgeq2dv 24423 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
8277, 81eqtrd 2833 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
83 intlewftc.7 . . . . . . . . . 10 (𝜑𝐸 = (ℝ D 𝐺))
8483adantr 484 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (ℝ D 𝐺))
8584fveq1d 6654 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐸𝑡) = ((ℝ D 𝐺)‘𝑡))
8685itgeq2dv 24423 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡)
87 fss 6506 . . . . . . . . . . . . 13 ((𝐸:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐸:(𝐴(,)𝐵)⟶ℂ)
8842, 58, 87syl2anc 587 . . . . . . . . . . . 12 (𝜑𝐸:(𝐴(,)𝐵)⟶ℂ)
89 cncffvrn 23541 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9061, 40, 89syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9188, 90mpbird 260 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9283eleq1d 2874 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
9391, 92mpbid 235 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9493, 92mpbird 260 . . . . . . . . 9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9594, 92mpbid 235 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9683, 30eqeltrrd 2891 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
97 fss 6506 . . . . . . . . . 10 ((𝐺:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
9822, 58, 97syl2anc 587 . . . . . . . . 9 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
99 cncffvrn 23541 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10061, 20, 99syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10198, 100mpbird 260 . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1028, 4, 5, 95, 96, 101ftc2 24685 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10386, 102eqtrd 2833 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10482, 103eqtrd 2833 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
10576, 104breq12d 5046 . . . 4 (𝜑 → (∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥 ↔ ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴))))
10647, 105mpbid 235 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴)))
107 intlewftc.15 . . 3 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
10819, 18, 25, 24, 106, 107le2addd 11263 . 2 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)))
10957, 12sseldi 3914 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℂ)
11057, 18sseldi 3914 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℂ)
111109, 110npcand 11005 . . 3 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) = (𝐹𝐵))
11257, 23sseldi 3914 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℂ)
11357, 24sseldi 3914 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
114112, 113npcand 11005 . . 3 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) = (𝐺𝐵))
115111, 114breq12d 5046 . 2 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) ↔ (𝐹𝐵) ≤ (𝐺𝐵)))
116108, 115mpbid 235 1 (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ⊆ wss 3882   class class class wbr 5033   ↦ cmpt 5113  ⟶wf 6325  ‘cfv 6329  (class class class)co 7142  ℂcc 10539  ℝcr 10540   + caddc 10544   ≤ cle 10680   − cmin 10874  (,)cioo 12743  [,]cicc 12746  –cn→ccncf 23519  𝐿1cibl 24259  ∫citg 24260   D cdv 24504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-inf2 9103  ax-cc 9861  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618  ax-pre-sup 10619  ax-addf 10620  ax-mulf 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-symdif 4171  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7397  df-ofr 7398  df-om 7571  df-1st 7681  df-2nd 7682  df-supp 7824  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-omul 8105  df-er 8287  df-map 8406  df-pm 8407  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-acn 9370  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-div 11302  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11987  df-dec 12104  df-uz 12249  df-q 12354  df-rp 12395  df-xneg 12512  df-xadd 12513  df-xmul 12514  df-ioo 12747  df-ioc 12748  df-ico 12749  df-icc 12750  df-fz 12903  df-fzo 13046  df-fl 13174  df-mod 13250  df-seq 13382  df-exp 13443  df-hash 13704  df-cj 14467  df-re 14468  df-im 14469  df-sqrt 14603  df-abs 14604  df-clim 14854  df-rlim 14855  df-sum 15052  df-struct 16494  df-ndx 16495  df-slot 16496  df-base 16498  df-sets 16499  df-ress 16500  df-plusg 16587  df-mulr 16588  df-starv 16589  df-sca 16590  df-vsca 16591  df-ip 16592  df-tset 16593  df-ple 16594  df-ds 16596  df-unif 16597  df-hom 16598  df-cco 16599  df-rest 16705  df-topn 16706  df-0g 16724  df-gsum 16725  df-topgen 16726  df-pt 16727  df-prds 16730  df-xrs 16784  df-qtop 16789  df-imas 16790  df-xps 16792  df-mre 16866  df-mrc 16867  df-acs 16869  df-mgm 17861  df-sgrp 17910  df-mnd 17921  df-submnd 17966  df-mulg 18235  df-cntz 18457  df-cmn 18918  df-psmet 20101  df-xmet 20102  df-met 20103  df-bl 20104  df-mopn 20105  df-fbas 20106  df-fg 20107  df-cnfld 20110  df-top 21537  df-topon 21554  df-topsp 21576  df-bases 21589  df-cld 21662  df-ntr 21663  df-cls 21664  df-nei 21741  df-lp 21779  df-perf 21780  df-cn 21870  df-cnp 21871  df-haus 21958  df-cmp 22030  df-tx 22205  df-hmeo 22398  df-fil 22489  df-fm 22581  df-flim 22582  df-flf 22583  df-xms 22965  df-ms 22966  df-tms 22967  df-cncf 23521  df-ovol 24106  df-vol 24107  df-mbf 24261  df-itg1 24262  df-itg2 24263  df-ibl 24264  df-itg 24265  df-0p 24312  df-limc 24507  df-dv 24508 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator