Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlewftc Structured version   Visualization version   GIF version

Theorem intlewftc 42043
Description: Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.)
Hypotheses
Ref Expression
intlewftc.1 (𝜑𝐴 ∈ ℝ)
intlewftc.2 (𝜑𝐵 ∈ ℝ)
intlewftc.3 (𝜑𝐴𝐵)
intlewftc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.5 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.6 (𝜑𝐷 = (ℝ D 𝐹))
intlewftc.7 (𝜑𝐸 = (ℝ D 𝐺))
intlewftc.8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.10 (𝜑𝐷 ∈ 𝐿1)
intlewftc.11 (𝜑𝐸 ∈ 𝐿1)
intlewftc.12 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
intlewftc.13 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
intlewftc.14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
intlewftc.15 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
Assertion
Ref Expression
intlewftc (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem intlewftc
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 intlewftc.4 . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2 cncff 24933 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
31, 2syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
4 intlewftc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5 intlewftc.3 . . . . . . 7 (𝜑𝐴𝐵)
64leidd 11827 . . . . . . 7 (𝜑𝐵𝐵)
74, 5, 63jca 1127 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵))
8 intlewftc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 elicc2 13449 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
108, 4, 9syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
117, 10mpbird 257 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
123, 11ffvelcdmd 7105 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
138leidd 11827 . . . . . . 7 (𝜑𝐴𝐴)
148, 13, 53jca 1127 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵))
15 elicc2 13449 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
168, 4, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
1714, 16mpbird 257 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
183, 17ffvelcdmd 7105 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
1912, 18resubcld 11689 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 intlewftc.5 . . . . . 6 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
21 cncff 24933 . . . . . 6 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2220, 21syl 17 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
2322, 11ffvelcdmd 7105 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
2422, 17ffvelcdmd 7105 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℝ)
2523, 24resubcld 11689 . . 3 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
26 intlewftc.10 . . . . . 6 (𝜑𝐷 ∈ 𝐿1)
27 intlewftc.12 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
2827eleq1d 2824 . . . . . 6 (𝜑 → (𝐷 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1))
2926, 28mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1)
30 intlewftc.11 . . . . . 6 (𝜑𝐸 ∈ 𝐿1)
31 intlewftc.13 . . . . . . 7 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
3231eleq1d 2824 . . . . . 6 (𝜑 → (𝐸 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1))
3330, 32mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1)
34 intlewftc.8 . . . . . . . 8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
35 cncff 24933 . . . . . . . 8 (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐷:(𝐴(,)𝐵)⟶ℝ)
3634, 35syl 17 . . . . . . 7 (𝜑𝐷:(𝐴(,)𝐵)⟶ℝ)
3727feq1d 6721 . . . . . . 7 (𝜑 → (𝐷:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ))
3836, 37mpbid 232 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ)
3938fvmptelcdm 7133 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃 ∈ ℝ)
40 intlewftc.9 . . . . . . . 8 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
41 cncff 24933 . . . . . . . 8 (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐸:(𝐴(,)𝐵)⟶ℝ)
4240, 41syl 17 . . . . . . 7 (𝜑𝐸:(𝐴(,)𝐵)⟶ℝ)
4331feq1d 6721 . . . . . . 7 (𝜑 → (𝐸:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ))
4442, 43mpbid 232 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ)
4544fvmptelcdm 7133 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑄 ∈ ℝ)
46 intlewftc.14 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
4729, 33, 39, 45, 46itgle 25860 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥)
4839itgmpt 25833 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡)
4927fveq1d 6909 . . . . . . . . . 10 (𝜑 → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5049adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5150eqcomd 2741 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) = (𝐷𝑡))
5251itgeq2dv 25832 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡)
53 intlewftc.6 . . . . . . . . . . 11 (𝜑𝐷 = (ℝ D 𝐹))
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐷 = (ℝ D 𝐹))
5554fveq1d 6909 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((ℝ D 𝐹)‘𝑡))
5655itgeq2dv 25832 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
57 ax-resscn 11210 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
59 fss 6753 . . . . . . . . . . . 12 ((𝐷:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐷:(𝐴(,)𝐵)⟶ℂ)
6036, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑𝐷:(𝐴(,)𝐵)⟶ℂ)
61 ssidd 4019 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
62 cncfcdm 24938 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6361, 34, 62syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6460, 63mpbird 257 . . . . . . . . . 10 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ))
6553eleq1d 2824 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
6664, 65mpbid 232 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
6753, 26eqeltrrd 2840 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
68 fss 6753 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
693, 58, 68syl2anc 584 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
70 cncfcdm 24938 . . . . . . . . . . 11 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7161, 1, 70syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7269, 71mpbird 257 . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
738, 4, 5, 66, 67, 72ftc2 26100 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7456, 73eqtrd 2775 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7552, 74eqtrd 2775 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7648, 75eqtrd 2775 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ((𝐹𝐵) − (𝐹𝐴)))
7745itgmpt 25833 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡)
7831adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
7978eqcomd 2741 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) = 𝐸)
8079fveq1d 6909 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) = (𝐸𝑡))
8180itgeq2dv 25832 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
8277, 81eqtrd 2775 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
83 intlewftc.7 . . . . . . . . . 10 (𝜑𝐸 = (ℝ D 𝐺))
8483adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (ℝ D 𝐺))
8584fveq1d 6909 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐸𝑡) = ((ℝ D 𝐺)‘𝑡))
8685itgeq2dv 25832 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡)
87 fss 6753 . . . . . . . . . . . . 13 ((𝐸:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐸:(𝐴(,)𝐵)⟶ℂ)
8842, 58, 87syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐸:(𝐴(,)𝐵)⟶ℂ)
89 cncfcdm 24938 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9061, 40, 89syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9188, 90mpbird 257 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9283eleq1d 2824 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
9391, 92mpbid 232 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9493, 92mpbird 257 . . . . . . . . 9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9594, 92mpbid 232 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9683, 30eqeltrrd 2840 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
97 fss 6753 . . . . . . . . . 10 ((𝐺:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
9822, 58, 97syl2anc 584 . . . . . . . . 9 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
99 cncfcdm 24938 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10061, 20, 99syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10198, 100mpbird 257 . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1028, 4, 5, 95, 96, 101ftc2 26100 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10386, 102eqtrd 2775 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10482, 103eqtrd 2775 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
10576, 104breq12d 5161 . . . 4 (𝜑 → (∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥 ↔ ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴))))
10647, 105mpbid 232 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴)))
107 intlewftc.15 . . 3 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
10819, 18, 25, 24, 106, 107le2addd 11880 . 2 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)))
10957, 12sselid 3993 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℂ)
11057, 18sselid 3993 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℂ)
111109, 110npcand 11622 . . 3 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) = (𝐹𝐵))
11257, 23sselid 3993 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℂ)
11357, 24sselid 3993 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
114112, 113npcand 11622 . . 3 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) = (𝐺𝐵))
115111, 114breq12d 5161 . 2 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) ↔ (𝐹𝐵) ≤ (𝐺𝐵)))
116108, 115mpbid 232 1 (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152   + caddc 11156  cle 11294  cmin 11490  (,)cioo 13384  [,]cicc 13387  cnccncf 24916  𝐿1cibl 25666  citg 25667   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-symdif 4259  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719  df-limc 25916  df-dv 25917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator