Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlewftc Structured version   Visualization version   GIF version

Theorem intlewftc 42049
Description: Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.)
Hypotheses
Ref Expression
intlewftc.1 (𝜑𝐴 ∈ ℝ)
intlewftc.2 (𝜑𝐵 ∈ ℝ)
intlewftc.3 (𝜑𝐴𝐵)
intlewftc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.5 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.6 (𝜑𝐷 = (ℝ D 𝐹))
intlewftc.7 (𝜑𝐸 = (ℝ D 𝐺))
intlewftc.8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.10 (𝜑𝐷 ∈ 𝐿1)
intlewftc.11 (𝜑𝐸 ∈ 𝐿1)
intlewftc.12 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
intlewftc.13 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
intlewftc.14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
intlewftc.15 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
Assertion
Ref Expression
intlewftc (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem intlewftc
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 intlewftc.4 . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2 cncff 24786 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
31, 2syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
4 intlewftc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5 intlewftc.3 . . . . . . 7 (𝜑𝐴𝐵)
64leidd 11744 . . . . . . 7 (𝜑𝐵𝐵)
74, 5, 63jca 1128 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵))
8 intlewftc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 elicc2 13372 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
108, 4, 9syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
117, 10mpbird 257 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
123, 11ffvelcdmd 7057 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
138leidd 11744 . . . . . . 7 (𝜑𝐴𝐴)
148, 13, 53jca 1128 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵))
15 elicc2 13372 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
168, 4, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
1714, 16mpbird 257 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
183, 17ffvelcdmd 7057 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
1912, 18resubcld 11606 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 intlewftc.5 . . . . . 6 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
21 cncff 24786 . . . . . 6 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2220, 21syl 17 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
2322, 11ffvelcdmd 7057 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
2422, 17ffvelcdmd 7057 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℝ)
2523, 24resubcld 11606 . . 3 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
26 intlewftc.10 . . . . . 6 (𝜑𝐷 ∈ 𝐿1)
27 intlewftc.12 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
2827eleq1d 2813 . . . . . 6 (𝜑 → (𝐷 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1))
2926, 28mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1)
30 intlewftc.11 . . . . . 6 (𝜑𝐸 ∈ 𝐿1)
31 intlewftc.13 . . . . . . 7 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
3231eleq1d 2813 . . . . . 6 (𝜑 → (𝐸 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1))
3330, 32mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1)
34 intlewftc.8 . . . . . . . 8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
35 cncff 24786 . . . . . . . 8 (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐷:(𝐴(,)𝐵)⟶ℝ)
3634, 35syl 17 . . . . . . 7 (𝜑𝐷:(𝐴(,)𝐵)⟶ℝ)
3727feq1d 6670 . . . . . . 7 (𝜑 → (𝐷:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ))
3836, 37mpbid 232 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ)
3938fvmptelcdm 7085 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃 ∈ ℝ)
40 intlewftc.9 . . . . . . . 8 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
41 cncff 24786 . . . . . . . 8 (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐸:(𝐴(,)𝐵)⟶ℝ)
4240, 41syl 17 . . . . . . 7 (𝜑𝐸:(𝐴(,)𝐵)⟶ℝ)
4331feq1d 6670 . . . . . . 7 (𝜑 → (𝐸:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ))
4442, 43mpbid 232 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ)
4544fvmptelcdm 7085 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑄 ∈ ℝ)
46 intlewftc.14 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
4729, 33, 39, 45, 46itgle 25711 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥)
4839itgmpt 25684 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡)
4927fveq1d 6860 . . . . . . . . . 10 (𝜑 → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5049adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5150eqcomd 2735 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) = (𝐷𝑡))
5251itgeq2dv 25683 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡)
53 intlewftc.6 . . . . . . . . . . 11 (𝜑𝐷 = (ℝ D 𝐹))
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐷 = (ℝ D 𝐹))
5554fveq1d 6860 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((ℝ D 𝐹)‘𝑡))
5655itgeq2dv 25683 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
57 ax-resscn 11125 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
59 fss 6704 . . . . . . . . . . . 12 ((𝐷:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐷:(𝐴(,)𝐵)⟶ℂ)
6036, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑𝐷:(𝐴(,)𝐵)⟶ℂ)
61 ssidd 3970 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
62 cncfcdm 24791 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6361, 34, 62syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6460, 63mpbird 257 . . . . . . . . . 10 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ))
6553eleq1d 2813 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
6664, 65mpbid 232 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
6753, 26eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
68 fss 6704 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
693, 58, 68syl2anc 584 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
70 cncfcdm 24791 . . . . . . . . . . 11 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7161, 1, 70syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7269, 71mpbird 257 . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
738, 4, 5, 66, 67, 72ftc2 25951 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7456, 73eqtrd 2764 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7552, 74eqtrd 2764 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7648, 75eqtrd 2764 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ((𝐹𝐵) − (𝐹𝐴)))
7745itgmpt 25684 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡)
7831adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
7978eqcomd 2735 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) = 𝐸)
8079fveq1d 6860 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) = (𝐸𝑡))
8180itgeq2dv 25683 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
8277, 81eqtrd 2764 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
83 intlewftc.7 . . . . . . . . . 10 (𝜑𝐸 = (ℝ D 𝐺))
8483adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (ℝ D 𝐺))
8584fveq1d 6860 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐸𝑡) = ((ℝ D 𝐺)‘𝑡))
8685itgeq2dv 25683 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡)
87 fss 6704 . . . . . . . . . . . . 13 ((𝐸:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐸:(𝐴(,)𝐵)⟶ℂ)
8842, 58, 87syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐸:(𝐴(,)𝐵)⟶ℂ)
89 cncfcdm 24791 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9061, 40, 89syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9188, 90mpbird 257 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9283eleq1d 2813 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
9391, 92mpbid 232 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9493, 92mpbird 257 . . . . . . . . 9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9594, 92mpbid 232 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9683, 30eqeltrrd 2829 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
97 fss 6704 . . . . . . . . . 10 ((𝐺:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
9822, 58, 97syl2anc 584 . . . . . . . . 9 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
99 cncfcdm 24791 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10061, 20, 99syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10198, 100mpbird 257 . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1028, 4, 5, 95, 96, 101ftc2 25951 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10386, 102eqtrd 2764 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10482, 103eqtrd 2764 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
10576, 104breq12d 5120 . . . 4 (𝜑 → (∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥 ↔ ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴))))
10647, 105mpbid 232 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴)))
107 intlewftc.15 . . 3 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
10819, 18, 25, 24, 106, 107le2addd 11797 . 2 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)))
10957, 12sselid 3944 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℂ)
11057, 18sselid 3944 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℂ)
111109, 110npcand 11537 . . 3 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) = (𝐹𝐵))
11257, 23sselid 3944 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℂ)
11357, 24sselid 3944 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
114112, 113npcand 11537 . . 3 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) = (𝐺𝐵))
115111, 114breq12d 5120 . 2 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) ↔ (𝐹𝐵) ≤ (𝐺𝐵)))
116108, 115mpbid 232 1 (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067   + caddc 11071  cle 11209  cmin 11405  (,)cioo 13306  [,]cicc 13309  cnccncf 24769  𝐿1cibl 25518  citg 25519   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator