Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlewftc Structured version   Visualization version   GIF version

Theorem intlewftc 42174
Description: Inequality inference by invoking fundamental theorem of calculus. (Contributed by metakunt, 22-Jul-2024.)
Hypotheses
Ref Expression
intlewftc.1 (𝜑𝐴 ∈ ℝ)
intlewftc.2 (𝜑𝐵 ∈ ℝ)
intlewftc.3 (𝜑𝐴𝐵)
intlewftc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.5 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
intlewftc.6 (𝜑𝐷 = (ℝ D 𝐹))
intlewftc.7 (𝜑𝐸 = (ℝ D 𝐺))
intlewftc.8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
intlewftc.10 (𝜑𝐷 ∈ 𝐿1)
intlewftc.11 (𝜑𝐸 ∈ 𝐿1)
intlewftc.12 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
intlewftc.13 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
intlewftc.14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
intlewftc.15 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
Assertion
Ref Expression
intlewftc (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem intlewftc
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 intlewftc.4 . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2 cncff 24814 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
31, 2syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
4 intlewftc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5 intlewftc.3 . . . . . . 7 (𝜑𝐴𝐵)
64leidd 11690 . . . . . . 7 (𝜑𝐵𝐵)
74, 5, 63jca 1128 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵))
8 intlewftc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 elicc2 13313 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
108, 4, 9syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐵)))
117, 10mpbird 257 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
123, 11ffvelcdmd 7024 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℝ)
138leidd 11690 . . . . . . 7 (𝜑𝐴𝐴)
148, 13, 53jca 1128 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵))
15 elicc2 13313 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
168, 4, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ ∧ 𝐴𝐴𝐴𝐵)))
1714, 16mpbird 257 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
183, 17ffvelcdmd 7024 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℝ)
1912, 18resubcld 11552 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 intlewftc.5 . . . . . 6 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
21 cncff 24814 . . . . . 6 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2220, 21syl 17 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
2322, 11ffvelcdmd 7024 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℝ)
2422, 17ffvelcdmd 7024 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℝ)
2523, 24resubcld 11552 . . 3 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
26 intlewftc.10 . . . . . 6 (𝜑𝐷 ∈ 𝐿1)
27 intlewftc.12 . . . . . . 7 (𝜑𝐷 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃))
2827eleq1d 2818 . . . . . 6 (𝜑 → (𝐷 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1))
2926, 28mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃) ∈ 𝐿1)
30 intlewftc.11 . . . . . 6 (𝜑𝐸 ∈ 𝐿1)
31 intlewftc.13 . . . . . . 7 (𝜑𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
3231eleq1d 2818 . . . . . 6 (𝜑 → (𝐸 ∈ 𝐿1 ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1))
3330, 32mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) ∈ 𝐿1)
34 intlewftc.8 . . . . . . . 8 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ))
35 cncff 24814 . . . . . . . 8 (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐷:(𝐴(,)𝐵)⟶ℝ)
3634, 35syl 17 . . . . . . 7 (𝜑𝐷:(𝐴(,)𝐵)⟶ℝ)
3727feq1d 6638 . . . . . . 7 (𝜑 → (𝐷:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ))
3836, 37mpbid 232 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃):(𝐴(,)𝐵)⟶ℝ)
3938fvmptelcdm 7052 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃 ∈ ℝ)
40 intlewftc.9 . . . . . . . 8 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ))
41 cncff 24814 . . . . . . . 8 (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐸:(𝐴(,)𝐵)⟶ℝ)
4240, 41syl 17 . . . . . . 7 (𝜑𝐸:(𝐴(,)𝐵)⟶ℝ)
4331feq1d 6638 . . . . . . 7 (𝜑 → (𝐸:(𝐴(,)𝐵)⟶ℝ ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ))
4442, 43mpbid 232 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄):(𝐴(,)𝐵)⟶ℝ)
4544fvmptelcdm 7052 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑄 ∈ ℝ)
46 intlewftc.14 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑃𝑄)
4729, 33, 39, 45, 46itgle 25739 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥)
4839itgmpt 25712 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡)
4927fveq1d 6830 . . . . . . . . . 10 (𝜑 → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5049adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡))
5150eqcomd 2739 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) = (𝐷𝑡))
5251itgeq2dv 25711 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡)
53 intlewftc.6 . . . . . . . . . . 11 (𝜑𝐷 = (ℝ D 𝐹))
5453adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐷 = (ℝ D 𝐹))
5554fveq1d 6830 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐷𝑡) = ((ℝ D 𝐹)‘𝑡))
5655itgeq2dv 25711 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡)
57 ax-resscn 11070 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
5857a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
59 fss 6672 . . . . . . . . . . . 12 ((𝐷:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐷:(𝐴(,)𝐵)⟶ℂ)
6036, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝜑𝐷:(𝐴(,)𝐵)⟶ℂ)
61 ssidd 3954 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
62 cncfcdm 24819 . . . . . . . . . . . 12 ((ℂ ⊆ ℂ ∧ 𝐷 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6361, 34, 62syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐷:(𝐴(,)𝐵)⟶ℂ))
6460, 63mpbird 257 . . . . . . . . . 10 (𝜑𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ))
6553eleq1d 2818 . . . . . . . . . 10 (𝜑 → (𝐷 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
6664, 65mpbid 232 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ ((𝐴(,)𝐵)–cn→ℂ))
6753, 26eqeltrrd 2834 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ 𝐿1)
68 fss 6672 . . . . . . . . . . 11 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
693, 58, 68syl2anc 584 . . . . . . . . . 10 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
70 cncfcdm 24819 . . . . . . . . . . 11 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7161, 1, 70syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
7269, 71mpbird 257 . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
738, 4, 5, 66, 67, 72ftc2 25979 . . . . . . . 8 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐹)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7456, 73eqtrd 2768 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐷𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7552, 74eqtrd 2768 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑃)‘𝑡) d𝑡 = ((𝐹𝐵) − (𝐹𝐴)))
7648, 75eqtrd 2768 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑃 d𝑥 = ((𝐹𝐵) − (𝐹𝐴)))
7745itgmpt 25712 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡)
7831adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄))
7978eqcomd 2739 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄) = 𝐸)
8079fveq1d 6830 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) = (𝐸𝑡))
8180itgeq2dv 25711 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑄)‘𝑡) d𝑡 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
8277, 81eqtrd 2768 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡)
83 intlewftc.7 . . . . . . . . . 10 (𝜑𝐸 = (ℝ D 𝐺))
8483adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐸 = (ℝ D 𝐺))
8584fveq1d 6830 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐸𝑡) = ((ℝ D 𝐺)‘𝑡))
8685itgeq2dv 25711 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡)
87 fss 6672 . . . . . . . . . . . . 13 ((𝐸:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐸:(𝐴(,)𝐵)⟶ℂ)
8842, 58, 87syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐸:(𝐴(,)𝐵)⟶ℂ)
89 cncfcdm 24819 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 𝐸 ∈ ((𝐴(,)𝐵)–cn→ℝ)) → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9061, 40, 89syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ 𝐸:(𝐴(,)𝐵)⟶ℂ))
9188, 90mpbird 257 . . . . . . . . . . 11 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9283eleq1d 2818 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ) ↔ (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ)))
9391, 92mpbid 232 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9493, 92mpbird 257 . . . . . . . . 9 (𝜑𝐸 ∈ ((𝐴(,)𝐵)–cn→ℂ))
9594, 92mpbid 232 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9683, 30eqeltrrd 2834 . . . . . . . 8 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
97 fss 6672 . . . . . . . . . 10 ((𝐺:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
9822, 58, 97syl2anc 584 . . . . . . . . 9 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
99 cncfcdm 24819 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10061, 20, 99syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℂ))
10198, 100mpbird 257 . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
1028, 4, 5, 95, 96, 101ftc2 25979 . . . . . . 7 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10386, 102eqtrd 2768 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)(𝐸𝑡) d𝑡 = ((𝐺𝐵) − (𝐺𝐴)))
10482, 103eqtrd 2768 . . . . 5 (𝜑 → ∫(𝐴(,)𝐵)𝑄 d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
10576, 104breq12d 5106 . . . 4 (𝜑 → (∫(𝐴(,)𝐵)𝑃 d𝑥 ≤ ∫(𝐴(,)𝐵)𝑄 d𝑥 ↔ ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴))))
10647, 105mpbid 232 . . 3 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ≤ ((𝐺𝐵) − (𝐺𝐴)))
107 intlewftc.15 . . 3 (𝜑 → (𝐹𝐴) ≤ (𝐺𝐴))
10819, 18, 25, 24, 106, 107le2addd 11743 . 2 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)))
10957, 12sselid 3928 . . . 4 (𝜑 → (𝐹𝐵) ∈ ℂ)
11057, 18sselid 3928 . . . 4 (𝜑 → (𝐹𝐴) ∈ ℂ)
111109, 110npcand 11483 . . 3 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) = (𝐹𝐵))
11257, 23sselid 3928 . . . 4 (𝜑 → (𝐺𝐵) ∈ ℂ)
11357, 24sselid 3928 . . . 4 (𝜑 → (𝐺𝐴) ∈ ℂ)
114112, 113npcand 11483 . . 3 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) = (𝐺𝐵))
115111, 114breq12d 5106 . 2 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) + (𝐹𝐴)) ≤ (((𝐺𝐵) − (𝐺𝐴)) + (𝐺𝐴)) ↔ (𝐹𝐵) ≤ (𝐺𝐵)))
116108, 115mpbid 232 1 (𝜑 → (𝐹𝐵) ≤ (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wss 3898   class class class wbr 5093  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cr 11012   + caddc 11016  cle 11154  cmin 11351  (,)cioo 13247  [,]cicc 13250  cnccncf 24797  𝐿1cibl 25546  citg 25547   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-symdif 4202  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549  df-itg2 25550  df-ibl 25551  df-itg 25552  df-0p 25599  df-limc 25795  df-dv 25796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator