MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptco Structured version   Visualization version   GIF version

Theorem dvmptco 25136
Description: Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
dvmptco.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptco.t (𝜑𝑇 ∈ {ℝ, ℂ})
dvmptco.a ((𝜑𝑥𝑋) → 𝐴𝑌)
dvmptco.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptco.c ((𝜑𝑦𝑌) → 𝐶 ∈ ℂ)
dvmptco.d ((𝜑𝑦𝑌) → 𝐷𝑊)
dvmptco.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptco.dc (𝜑 → (𝑇 D (𝑦𝑌𝐶)) = (𝑦𝑌𝐷))
dvmptco.e (𝑦 = 𝐴𝐶 = 𝐸)
dvmptco.f (𝑦 = 𝐴𝐷 = 𝐹)
Assertion
Ref Expression
dvmptco (𝜑 → (𝑆 D (𝑥𝑋𝐸)) = (𝑥𝑋 ↦ (𝐹 · 𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶   𝑥,𝐷   𝑦,𝐸   𝑦,𝐹   𝑦,𝑇   𝑥,𝑉   𝑥,𝑦,𝜑   𝑦,𝑊   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑦)   𝑊(𝑥)   𝑋(𝑦)

Proof of Theorem dvmptco
StepHypRef Expression
1 dvmptco.t . . 3 (𝜑𝑇 ∈ {ℝ, ℂ})
2 dvmptco.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
3 dvmptco.c . . . 4 ((𝜑𝑦𝑌) → 𝐶 ∈ ℂ)
43fmpttd 6989 . . 3 (𝜑 → (𝑦𝑌𝐶):𝑌⟶ℂ)
5 dvmptco.a . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
65fmpttd 6989 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
7 dvmptco.dc . . . . 5 (𝜑 → (𝑇 D (𝑦𝑌𝐶)) = (𝑦𝑌𝐷))
87dmeqd 5814 . . . 4 (𝜑 → dom (𝑇 D (𝑦𝑌𝐶)) = dom (𝑦𝑌𝐷))
9 dvmptco.d . . . . . 6 ((𝜑𝑦𝑌) → 𝐷𝑊)
109ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑦𝑌 𝐷𝑊)
11 dmmptg 6145 . . . . 5 (∀𝑦𝑌 𝐷𝑊 → dom (𝑦𝑌𝐷) = 𝑌)
1210, 11syl 17 . . . 4 (𝜑 → dom (𝑦𝑌𝐷) = 𝑌)
138, 12eqtrd 2778 . . 3 (𝜑 → dom (𝑇 D (𝑦𝑌𝐶)) = 𝑌)
14 dvmptco.da . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
1514dmeqd 5814 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
16 dvmptco.b . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑉)
1716ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
18 dmmptg 6145 . . . . 5 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1917, 18syl 17 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
2015, 19eqtrd 2778 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
211, 2, 4, 6, 13, 20dvcof 25112 . 2 (𝜑 → (𝑆 D ((𝑦𝑌𝐶) ∘ (𝑥𝑋𝐴))) = (((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)) ∘f · (𝑆 D (𝑥𝑋𝐴))))
22 eqidd 2739 . . . 4 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
23 eqidd 2739 . . . 4 (𝜑 → (𝑦𝑌𝐶) = (𝑦𝑌𝐶))
24 dvmptco.e . . . 4 (𝑦 = 𝐴𝐶 = 𝐸)
255, 22, 23, 24fmptco 7001 . . 3 (𝜑 → ((𝑦𝑌𝐶) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐸))
2625oveq2d 7291 . 2 (𝜑 → (𝑆 D ((𝑦𝑌𝐶) ∘ (𝑥𝑋𝐴))) = (𝑆 D (𝑥𝑋𝐸)))
27 ovex 7308 . . . . 5 (𝑆 D (𝑥𝑋𝐴)) ∈ V
2827dmex 7758 . . . 4 dom (𝑆 D (𝑥𝑋𝐴)) ∈ V
2920, 28eqeltrrdi 2848 . . 3 (𝜑𝑋 ∈ V)
301, 3, 9, 7dvmptcl 25123 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐷 ∈ ℂ)
317, 30fmpt3d 6990 . . . . . 6 (𝜑 → (𝑇 D (𝑦𝑌𝐶)):𝑌⟶ℂ)
32 fco 6624 . . . . . 6 (((𝑇 D (𝑦𝑌𝐶)):𝑌⟶ℂ ∧ (𝑥𝑋𝐴):𝑋𝑌) → ((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)):𝑋⟶ℂ)
3331, 6, 32syl2anc 584 . . . . 5 (𝜑 → ((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)):𝑋⟶ℂ)
34 dvmptco.f . . . . . . 7 (𝑦 = 𝐴𝐷 = 𝐹)
355, 22, 7, 34fmptco 7001 . . . . . 6 (𝜑 → ((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐹))
3635feq1d 6585 . . . . 5 (𝜑 → (((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)):𝑋⟶ℂ ↔ (𝑥𝑋𝐹):𝑋⟶ℂ))
3733, 36mpbid 231 . . . 4 (𝜑 → (𝑥𝑋𝐹):𝑋⟶ℂ)
3837fvmptelrn 6987 . . 3 ((𝜑𝑥𝑋) → 𝐹 ∈ ℂ)
3929, 38, 16, 35, 14offval2 7553 . 2 (𝜑 → (((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)) ∘f · (𝑆 D (𝑥𝑋𝐴))) = (𝑥𝑋 ↦ (𝐹 · 𝐵)))
4021, 26, 393eqtr3d 2786 1 (𝜑 → (𝑆 D (𝑥𝑋𝐸)) = (𝑥𝑋 ↦ (𝐹 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  {cpr 4563  cmpt 5157  dom cdm 5589  ccom 5593  wf 6429  (class class class)co 7275  f cof 7531  cc 10869  cr 10870   · cmul 10876   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  dvrecg  25137  dvexp3  25142  dvsincos  25145  dvlipcn  25158  lhop2  25179  itgsubstlem  25212  dvtaylp  25529  taylthlem2  25533  pige3ALT  25676  advlogexp  25810  logtayl  25815  dvcxp1  25893  dvcxp2  25894  dvcncxp1  25896  loglesqrt  25911  dvatan  26085  lgamgulmlem2  26179  logdivsum  26681  log2sumbnd  26692  itgexpif  32586  dvtan  35827  dvasin  35861  areacirclem1  35865  lcmineqlem8  40044  lcmineqlem12  40048  dvrelogpow2b  40076  aks4d1p1p6  40081  expgrowthi  41951  expgrowth  41953  binomcxplemdvbinom  41971  dvsinexp  43452  dvxpaek  43481  fourierdlem28  43676  fourierdlem39  43687  fourierdlem56  43703  fourierdlem60  43707  fourierdlem61  43708  etransclem46  43821
  Copyright terms: Public domain W3C validator