MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptco Structured version   Visualization version   GIF version

Theorem dvmptco 25898
Description: Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
dvmptco.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptco.t (𝜑𝑇 ∈ {ℝ, ℂ})
dvmptco.a ((𝜑𝑥𝑋) → 𝐴𝑌)
dvmptco.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptco.c ((𝜑𝑦𝑌) → 𝐶 ∈ ℂ)
dvmptco.d ((𝜑𝑦𝑌) → 𝐷𝑊)
dvmptco.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptco.dc (𝜑 → (𝑇 D (𝑦𝑌𝐶)) = (𝑦𝑌𝐷))
dvmptco.e (𝑦 = 𝐴𝐶 = 𝐸)
dvmptco.f (𝑦 = 𝐴𝐷 = 𝐹)
Assertion
Ref Expression
dvmptco (𝜑 → (𝑆 D (𝑥𝑋𝐸)) = (𝑥𝑋 ↦ (𝐹 · 𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶   𝑥,𝐷   𝑦,𝐸   𝑦,𝐹   𝑦,𝑇   𝑥,𝑉   𝑥,𝑦,𝜑   𝑦,𝑊   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑦)   𝑊(𝑥)   𝑋(𝑦)

Proof of Theorem dvmptco
StepHypRef Expression
1 dvmptco.t . . 3 (𝜑𝑇 ∈ {ℝ, ℂ})
2 dvmptco.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
3 dvmptco.c . . . 4 ((𝜑𝑦𝑌) → 𝐶 ∈ ℂ)
43fmpttd 7043 . . 3 (𝜑 → (𝑦𝑌𝐶):𝑌⟶ℂ)
5 dvmptco.a . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
65fmpttd 7043 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
7 dvmptco.dc . . . . 5 (𝜑 → (𝑇 D (𝑦𝑌𝐶)) = (𝑦𝑌𝐷))
87dmeqd 5840 . . . 4 (𝜑 → dom (𝑇 D (𝑦𝑌𝐶)) = dom (𝑦𝑌𝐷))
9 dvmptco.d . . . . . 6 ((𝜑𝑦𝑌) → 𝐷𝑊)
109ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑦𝑌 𝐷𝑊)
11 dmmptg 6184 . . . . 5 (∀𝑦𝑌 𝐷𝑊 → dom (𝑦𝑌𝐷) = 𝑌)
1210, 11syl 17 . . . 4 (𝜑 → dom (𝑦𝑌𝐷) = 𝑌)
138, 12eqtrd 2766 . . 3 (𝜑 → dom (𝑇 D (𝑦𝑌𝐶)) = 𝑌)
14 dvmptco.da . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
1514dmeqd 5840 . . . 4 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
16 dvmptco.b . . . . . 6 ((𝜑𝑥𝑋) → 𝐵𝑉)
1716ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
18 dmmptg 6184 . . . . 5 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1917, 18syl 17 . . . 4 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
2015, 19eqtrd 2766 . . 3 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
211, 2, 4, 6, 13, 20dvcof 25874 . 2 (𝜑 → (𝑆 D ((𝑦𝑌𝐶) ∘ (𝑥𝑋𝐴))) = (((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)) ∘f · (𝑆 D (𝑥𝑋𝐴))))
22 eqidd 2732 . . . 4 (𝜑 → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
23 eqidd 2732 . . . 4 (𝜑 → (𝑦𝑌𝐶) = (𝑦𝑌𝐶))
24 dvmptco.e . . . 4 (𝑦 = 𝐴𝐶 = 𝐸)
255, 22, 23, 24fmptco 7057 . . 3 (𝜑 → ((𝑦𝑌𝐶) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐸))
2625oveq2d 7357 . 2 (𝜑 → (𝑆 D ((𝑦𝑌𝐶) ∘ (𝑥𝑋𝐴))) = (𝑆 D (𝑥𝑋𝐸)))
27 ovex 7374 . . . . 5 (𝑆 D (𝑥𝑋𝐴)) ∈ V
2827dmex 7834 . . . 4 dom (𝑆 D (𝑥𝑋𝐴)) ∈ V
2920, 28eqeltrrdi 2840 . . 3 (𝜑𝑋 ∈ V)
301, 3, 9, 7dvmptcl 25885 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐷 ∈ ℂ)
317, 30fmpt3d 7044 . . . . . 6 (𝜑 → (𝑇 D (𝑦𝑌𝐶)):𝑌⟶ℂ)
32 fco 6670 . . . . . 6 (((𝑇 D (𝑦𝑌𝐶)):𝑌⟶ℂ ∧ (𝑥𝑋𝐴):𝑋𝑌) → ((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)):𝑋⟶ℂ)
3331, 6, 32syl2anc 584 . . . . 5 (𝜑 → ((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)):𝑋⟶ℂ)
34 dvmptco.f . . . . . . 7 (𝑦 = 𝐴𝐷 = 𝐹)
355, 22, 7, 34fmptco 7057 . . . . . 6 (𝜑 → ((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐹))
3635feq1d 6628 . . . . 5 (𝜑 → (((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)):𝑋⟶ℂ ↔ (𝑥𝑋𝐹):𝑋⟶ℂ))
3733, 36mpbid 232 . . . 4 (𝜑 → (𝑥𝑋𝐹):𝑋⟶ℂ)
3837fvmptelcdm 7041 . . 3 ((𝜑𝑥𝑋) → 𝐹 ∈ ℂ)
3929, 38, 16, 35, 14offval2 7625 . 2 (𝜑 → (((𝑇 D (𝑦𝑌𝐶)) ∘ (𝑥𝑋𝐴)) ∘f · (𝑆 D (𝑥𝑋𝐴))) = (𝑥𝑋 ↦ (𝐹 · 𝐵)))
4021, 26, 393eqtr3d 2774 1 (𝜑 → (𝑆 D (𝑥𝑋𝐸)) = (𝑥𝑋 ↦ (𝐹 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  {cpr 4573  cmpt 5167  dom cdm 5611  ccom 5615  wf 6472  (class class class)co 7341  f cof 7603  cc 10999  cr 11000   · cmul 11006   D cdv 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-icc 13247  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790
This theorem is referenced by:  dvrecg  25899  dvexp3  25904  dvsincos  25907  dvlipcn  25921  lhop2  25942  itgsubstlem  25977  dvtaylp  26300  taylthlem2  26304  taylthlem2OLD  26305  pige3ALT  26451  advlogexp  26586  logtayl  26591  dvcxp1  26671  dvcxp2  26672  dvcncxp1  26674  loglesqrt  26693  dvatan  26867  lgamgulmlem2  26962  logdivsum  27466  log2sumbnd  27477  itgexpif  34611  dvtan  37710  dvasin  37744  areacirclem1  37748  lcmineqlem8  42069  lcmineqlem12  42073  dvrelogpow2b  42101  aks4d1p1p6  42106  readvrec2  42394  readvrec  42395  readvcot  42397  expgrowthi  44366  expgrowth  44368  binomcxplemdvbinom  44386  dvsinexp  45949  dvxpaek  45978  fourierdlem28  46173  fourierdlem39  46184  fourierdlem56  46200  fourierdlem60  46204  fourierdlem61  46205  etransclem46  46318
  Copyright terms: Public domain W3C validator