Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvmptco | Structured version Visualization version GIF version |
Description: Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvmptco.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvmptco.t | ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) |
dvmptco.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
dvmptco.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptco.c | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐶 ∈ ℂ) |
dvmptco.d | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ 𝑊) |
dvmptco.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
dvmptco.dc | ⊢ (𝜑 → (𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑦 ∈ 𝑌 ↦ 𝐷)) |
dvmptco.e | ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐸) |
dvmptco.f | ⊢ (𝑦 = 𝐴 → 𝐷 = 𝐹) |
Ref | Expression |
---|---|
dvmptco | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐸)) = (𝑥 ∈ 𝑋 ↦ (𝐹 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptco.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) | |
2 | dvmptco.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
3 | dvmptco.c | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐶 ∈ ℂ) | |
4 | 3 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐶):𝑌⟶ℂ) |
5 | dvmptco.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
6 | 5 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
7 | dvmptco.dc | . . . . 5 ⊢ (𝜑 → (𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑦 ∈ 𝑌 ↦ 𝐷)) | |
8 | 7 | dmeqd 5803 | . . . 4 ⊢ (𝜑 → dom (𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) = dom (𝑦 ∈ 𝑌 ↦ 𝐷)) |
9 | dvmptco.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ 𝑊) | |
10 | 9 | ralrimiva 3107 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝑌 𝐷 ∈ 𝑊) |
11 | dmmptg 6134 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑌 𝐷 ∈ 𝑊 → dom (𝑦 ∈ 𝑌 ↦ 𝐷) = 𝑌) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑦 ∈ 𝑌 ↦ 𝐷) = 𝑌) |
13 | 8, 12 | eqtrd 2778 | . . 3 ⊢ (𝜑 → dom (𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) = 𝑌) |
14 | dvmptco.da | . . . . 5 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
15 | 14 | dmeqd 5803 | . . . 4 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
16 | dvmptco.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
17 | 16 | ralrimiva 3107 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
18 | dmmptg 6134 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
20 | 15, 19 | eqtrd 2778 | . . 3 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
21 | 1, 2, 4, 6, 13, 20 | dvcof 25017 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑦 ∈ 𝑌 ↦ 𝐶) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (((𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘f · (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)))) |
22 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴)) | |
23 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑦 ∈ 𝑌 ↦ 𝐶)) | |
24 | dvmptco.e | . . . 4 ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐸) | |
25 | 5, 22, 23, 24 | fmptco 6983 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ 𝑌 ↦ 𝐶) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐸)) |
26 | 25 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝑆 D ((𝑦 ∈ 𝑌 ↦ 𝐶) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐸))) |
27 | ovex 7288 | . . . . 5 ⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ V | |
28 | 27 | dmex 7732 | . . . 4 ⊢ dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) ∈ V |
29 | 20, 28 | eqeltrrdi 2848 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
30 | 1, 3, 9, 7 | dvmptcl 25028 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ ℂ) |
31 | 7, 30 | fmpt3d 6972 | . . . . . 6 ⊢ (𝜑 → (𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)):𝑌⟶ℂ) |
32 | fco 6608 | . . . . . 6 ⊢ (((𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)):𝑌⟶ℂ ∧ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) → ((𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶ℂ) | |
33 | 31, 6, 32 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶ℂ) |
34 | dvmptco.f | . . . . . . 7 ⊢ (𝑦 = 𝐴 → 𝐷 = 𝐹) | |
35 | 5, 22, 7, 34 | fmptco 6983 | . . . . . 6 ⊢ (𝜑 → ((𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐹)) |
36 | 35 | feq1d 6569 | . . . . 5 ⊢ (𝜑 → (((𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐹):𝑋⟶ℂ)) |
37 | 33, 36 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐹):𝑋⟶ℂ) |
38 | 37 | fvmptelrn 6969 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ ℂ) |
39 | 29, 38, 16, 35, 14 | offval2 7531 | . 2 ⊢ (𝜑 → (((𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) ∘f · (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐹 · 𝐵))) |
40 | 21, 26, 39 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐸)) = (𝑥 ∈ 𝑋 ↦ (𝐹 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 {cpr 4560 ↦ cmpt 5153 dom cdm 5580 ∘ ccom 5584 ⟶wf 6414 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 · cmul 10807 D cdv 24932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 |
This theorem is referenced by: dvrecg 25042 dvexp3 25047 dvsincos 25050 dvlipcn 25063 lhop2 25084 itgsubstlem 25117 dvtaylp 25434 taylthlem2 25438 pige3ALT 25581 advlogexp 25715 logtayl 25720 dvcxp1 25798 dvcxp2 25799 dvcncxp1 25801 loglesqrt 25816 dvatan 25990 lgamgulmlem2 26084 logdivsum 26586 log2sumbnd 26597 itgexpif 32486 dvtan 35754 dvasin 35788 areacirclem1 35792 lcmineqlem8 39972 lcmineqlem12 39976 dvrelogpow2b 40004 aks4d1p1p6 40009 expgrowthi 41840 expgrowth 41842 binomcxplemdvbinom 41860 dvsinexp 43342 dvxpaek 43371 fourierdlem28 43566 fourierdlem39 43577 fourierdlem56 43593 fourierdlem60 43597 fourierdlem61 43598 etransclem46 43711 |
Copyright terms: Public domain | W3C validator |