MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptcl Structured version   Visualization version   GIF version

Theorem dvmptcl 24856
Description: Closure lemma for dvmptcmul 24861 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptcl ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptcl
StepHypRef Expression
1 dvmptadd.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvfg 24803 . . . . 5 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ)
4 dvmptadd.da . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
54dmeqd 5774 . . . . . 6 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
6 dvmptadd.b . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵𝑉)
76ralrimiva 3105 . . . . . . 7 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
8 dmmptg 6105 . . . . . . 7 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
97, 8syl 17 . . . . . 6 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
105, 9eqtrd 2777 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
1110feq2d 6531 . . . 4 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ ↔ (𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ))
123, 11mpbid 235 . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ)
134feq1d 6530 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ))
1412, 13mpbid 235 . 2 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℂ)
1514fvmptelrn 6930 1 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  {cpr 4543  cmpt 5135  dom cdm 5551  wf 6376  (class class class)co 7213  cc 10727  cr 10728   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-rest 16927  df-topn 16928  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cnp 22125  df-haus 22212  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-limc 24763  df-dv 24764
This theorem is referenced by:  dvmptcmul  24861  dvmptdivc  24862  dvmptneg  24863  dvmptsub  24864  dvmptcj  24865  dvmptre  24866  dvmptim  24867  dvmptco  24869  dvrecg  24870  dvmptdiv  24871  dvivth  24907  ulmdvlem1  25292  pserdvlem2  25320
  Copyright terms: Public domain W3C validator