![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfmpt2ss | Structured version Visualization version GIF version |
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmpt2ss.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
cncfmpt2ss.2 | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
cncfmpt2ss.3 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→𝑆)) |
cncfmpt2ss.4 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→𝑆)) |
cncfmpt2ss.5 | ⊢ 𝑆 ⊆ ℂ |
cncfmpt2ss.6 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) |
Ref | Expression |
---|---|
cncfmpt2ss | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmpt2ss.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→𝑆)) | |
2 | cncff 24338 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→𝑆) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑆) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑆) |
4 | 3 | fvmptelcdm 7097 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
5 | cncfmpt2ss.4 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→𝑆)) | |
6 | cncff 24338 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→𝑆) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑆) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑆) |
8 | 7 | fvmptelcdm 7097 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
9 | cncfmpt2ss.6 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) | |
10 | 4, 8, 9 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ 𝑆) |
11 | 10 | fmpttd 7099 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)):𝑋⟶𝑆) |
12 | cncfmpt2ss.5 | . . 3 ⊢ 𝑆 ⊆ ℂ | |
13 | cncfmpt2ss.1 | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
14 | cncfmpt2ss.2 | . . . . 5 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
16 | ssid 4000 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
17 | cncfss 24344 | . . . . . 6 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→𝑆) ⊆ (𝑋–cn→ℂ)) | |
18 | 12, 16, 17 | mp2an 690 | . . . . 5 ⊢ (𝑋–cn→𝑆) ⊆ (𝑋–cn→ℂ) |
19 | 18, 1 | sselid 3976 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
20 | 18, 5 | sselid 3976 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
21 | 13, 15, 19, 20 | cncfmpt2f 24360 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) |
22 | cncfcdm 24343 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) → ((𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆) ↔ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)):𝑋⟶𝑆)) | |
23 | 12, 21, 22 | sylancr 587 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆) ↔ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)):𝑋⟶𝑆)) |
24 | 11, 23 | mpbird 256 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3944 ↦ cmpt 5224 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 ℂcc 11090 TopOpenctopn 17349 ℂfldccnfld 20878 Cn ccn 22657 ×t ctx 22993 –cn→ccncf 24321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fi 9388 df-sup 9419 df-inf 9420 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-q 12915 df-rp 12957 df-xneg 13074 df-xadd 13075 df-xmul 13076 df-fz 13467 df-seq 13949 df-exp 14010 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17127 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17350 df-topn 17351 df-topgen 17371 df-psmet 20870 df-xmet 20871 df-met 20872 df-bl 20873 df-mopn 20874 df-cnfld 20879 df-top 22325 df-topon 22342 df-topsp 22364 df-bases 22378 df-cn 22660 df-cnp 22661 df-tx 22995 df-xms 23755 df-ms 23756 df-cncf 24323 |
This theorem is referenced by: cmvth 25437 dvle 25453 dvfsumle 25467 dvfsumge 25468 dvfsumlem2 25473 |
Copyright terms: Public domain | W3C validator |