Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncfmpt2ss | Structured version Visualization version GIF version |
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
cncfmpt2ss.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
cncfmpt2ss.2 | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
cncfmpt2ss.3 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→𝑆)) |
cncfmpt2ss.4 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→𝑆)) |
cncfmpt2ss.5 | ⊢ 𝑆 ⊆ ℂ |
cncfmpt2ss.6 | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) |
Ref | Expression |
---|---|
cncfmpt2ss | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncfmpt2ss.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→𝑆)) | |
2 | cncff 23648 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→𝑆) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑆) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑆) |
4 | 3 | fvmptelrn 6890 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
5 | cncfmpt2ss.4 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→𝑆)) | |
6 | cncff 23648 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→𝑆) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑆) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑆) |
8 | 7 | fvmptelrn 6890 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
9 | cncfmpt2ss.6 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝑆) | |
10 | 4, 8, 9 | syl2anc 587 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴𝐹𝐵) ∈ 𝑆) |
11 | 10 | fmpttd 6892 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)):𝑋⟶𝑆) |
12 | cncfmpt2ss.5 | . . 3 ⊢ 𝑆 ⊆ ℂ | |
13 | cncfmpt2ss.1 | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
14 | cncfmpt2ss.2 | . . . . 5 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
16 | ssid 3900 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
17 | cncfss 23654 | . . . . . 6 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→𝑆) ⊆ (𝑋–cn→ℂ)) | |
18 | 12, 16, 17 | mp2an 692 | . . . . 5 ⊢ (𝑋–cn→𝑆) ⊆ (𝑋–cn→ℂ) |
19 | 18, 1 | sseldi 3876 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
20 | 18, 5 | sseldi 3876 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
21 | 13, 15, 19, 20 | cncfmpt2f 23670 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) |
22 | cncffvrn 23653 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) → ((𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆) ↔ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)):𝑋⟶𝑆)) | |
23 | 12, 21, 22 | sylancr 590 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆) ↔ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)):𝑋⟶𝑆)) |
24 | 11, 23 | mpbird 260 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ⊆ wss 3844 ↦ cmpt 5111 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 ℂcc 10616 TopOpenctopn 16801 ℂfldccnfld 20220 Cn ccn 21978 ×t ctx 22314 –cn→ccncf 23631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 ax-pre-sup 10696 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-er 8323 df-map 8442 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-fi 8951 df-sup 8982 df-inf 8983 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-div 11379 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-z 12066 df-dec 12183 df-uz 12328 df-q 12434 df-rp 12476 df-xneg 12593 df-xadd 12594 df-xmul 12595 df-fz 12985 df-seq 13464 df-exp 13525 df-cj 14551 df-re 14552 df-im 14553 df-sqrt 14687 df-abs 14688 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-plusg 16684 df-mulr 16685 df-starv 16686 df-tset 16690 df-ple 16691 df-ds 16693 df-unif 16694 df-rest 16802 df-topn 16803 df-topgen 16823 df-psmet 20212 df-xmet 20213 df-met 20214 df-bl 20215 df-mopn 20216 df-cnfld 20221 df-top 21648 df-topon 21665 df-topsp 21687 df-bases 21700 df-cn 21981 df-cnp 21982 df-tx 22316 df-xms 23076 df-ms 23077 df-cncf 23633 |
This theorem is referenced by: cmvth 24746 dvle 24762 dvfsumle 24776 dvfsumge 24777 dvfsumlem2 24782 |
Copyright terms: Public domain | W3C validator |