MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt2ss Structured version   Visualization version   GIF version

Theorem cncfmpt2ss 24837
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
cncfmpt2ss.1 𝐽 = (TopOpen‘ℂfld)
cncfmpt2ss.2 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
cncfmpt2ss.3 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
cncfmpt2ss.4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
cncfmpt2ss.5 𝑆 ⊆ ℂ
cncfmpt2ss.6 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
Assertion
Ref Expression
cncfmpt2ss (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cncfmpt2ss
StepHypRef Expression
1 cncfmpt2ss.3 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
2 cncff 24814 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐴):𝑋𝑆)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑆)
43fvmptelcdm 7052 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑆)
5 cncfmpt2ss.4 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
6 cncff 24814 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐵):𝑋𝑆)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑆)
87fvmptelcdm 7052 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
9 cncfmpt2ss.6 . . . 4 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
104, 8, 9syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝐴𝐹𝐵) ∈ 𝑆)
1110fmpttd 7054 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆)
12 cncfmpt2ss.5 . . 3 𝑆 ⊆ ℂ
13 cncfmpt2ss.1 . . . 4 𝐽 = (TopOpen‘ℂfld)
14 cncfmpt2ss.2 . . . . 5 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1514a1i 11 . . . 4 (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
16 ssid 3953 . . . . . 6 ℂ ⊆ ℂ
17 cncfss 24820 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn𝑆) ⊆ (𝑋cn→ℂ))
1812, 16, 17mp2an 692 . . . . 5 (𝑋cn𝑆) ⊆ (𝑋cn→ℂ)
1918, 1sselid 3928 . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2018, 5sselid 3928 . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2113, 15, 19, 20cncfmpt2f 24836 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
22 cncfcdm 24819 . . 3 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2312, 21, 22sylancr 587 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2411, 23mpbird 257 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  TopOpenctopn 17327  fldccnfld 21293   Cn ccn 23140   ×t ctx 23476  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-topn 17329  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-tx 23478  df-xms 24236  df-ms 24237  df-cncf 24799
This theorem is referenced by:  cmvth  25923  cmvthOLD  25924  dvle  25940  dvfsumle  25954  dvfsumleOLD  25955  dvfsumge  25956  dvfsumlem2  25961  dvfsumlem2OLD  25962
  Copyright terms: Public domain W3C validator