MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt2ss Structured version   Visualization version   GIF version

Theorem cncfmpt2ss 24860
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
cncfmpt2ss.1 𝐽 = (TopOpen‘ℂfld)
cncfmpt2ss.2 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
cncfmpt2ss.3 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
cncfmpt2ss.4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
cncfmpt2ss.5 𝑆 ⊆ ℂ
cncfmpt2ss.6 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
Assertion
Ref Expression
cncfmpt2ss (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cncfmpt2ss
StepHypRef Expression
1 cncfmpt2ss.3 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
2 cncff 24837 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐴):𝑋𝑆)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑆)
43fvmptelcdm 7103 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑆)
5 cncfmpt2ss.4 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
6 cncff 24837 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐵):𝑋𝑆)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑆)
87fvmptelcdm 7103 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
9 cncfmpt2ss.6 . . . 4 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
104, 8, 9syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝐴𝐹𝐵) ∈ 𝑆)
1110fmpttd 7105 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆)
12 cncfmpt2ss.5 . . 3 𝑆 ⊆ ℂ
13 cncfmpt2ss.1 . . . 4 𝐽 = (TopOpen‘ℂfld)
14 cncfmpt2ss.2 . . . . 5 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1514a1i 11 . . . 4 (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
16 ssid 3981 . . . . . 6 ℂ ⊆ ℂ
17 cncfss 24843 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn𝑆) ⊆ (𝑋cn→ℂ))
1812, 16, 17mp2an 692 . . . . 5 (𝑋cn𝑆) ⊆ (𝑋cn→ℂ)
1918, 1sselid 3956 . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2018, 5sselid 3956 . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2113, 15, 19, 20cncfmpt2f 24859 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
22 cncfcdm 24842 . . 3 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2312, 21, 22sylancr 587 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2411, 23mpbird 257 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  TopOpenctopn 17435  fldccnfld 21315   Cn ccn 23162   ×t ctx 23498  cnccncf 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cn 23165  df-cnp 23166  df-tx 23500  df-xms 24259  df-ms 24260  df-cncf 24822
This theorem is referenced by:  cmvth  25947  cmvthOLD  25948  dvle  25964  dvfsumle  25978  dvfsumleOLD  25979  dvfsumge  25980  dvfsumlem2  25985  dvfsumlem2OLD  25986
  Copyright terms: Public domain W3C validator