MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt2ss Structured version   Visualization version   GIF version

Theorem cncfmpt2ss 23671
Description: Composition of continuous functions in a subset. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
cncfmpt2ss.1 𝐽 = (TopOpen‘ℂfld)
cncfmpt2ss.2 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
cncfmpt2ss.3 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
cncfmpt2ss.4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
cncfmpt2ss.5 𝑆 ⊆ ℂ
cncfmpt2ss.6 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
Assertion
Ref Expression
cncfmpt2ss (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝜑,𝑥   𝑥,𝑆   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cncfmpt2ss
StepHypRef Expression
1 cncfmpt2ss.3 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn𝑆))
2 cncff 23648 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐴):𝑋𝑆)
31, 2syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑆)
43fvmptelrn 6890 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑆)
5 cncfmpt2ss.4 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn𝑆))
6 cncff 23648 . . . . . 6 ((𝑥𝑋𝐵) ∈ (𝑋cn𝑆) → (𝑥𝑋𝐵):𝑋𝑆)
75, 6syl 17 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑆)
87fvmptelrn 6890 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
9 cncfmpt2ss.6 . . . 4 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
104, 8, 9syl2anc 587 . . 3 ((𝜑𝑥𝑋) → (𝐴𝐹𝐵) ∈ 𝑆)
1110fmpttd 6892 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆)
12 cncfmpt2ss.5 . . 3 𝑆 ⊆ ℂ
13 cncfmpt2ss.1 . . . 4 𝐽 = (TopOpen‘ℂfld)
14 cncfmpt2ss.2 . . . . 5 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1514a1i 11 . . . 4 (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
16 ssid 3900 . . . . . 6 ℂ ⊆ ℂ
17 cncfss 23654 . . . . . 6 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋cn𝑆) ⊆ (𝑋cn→ℂ))
1812, 16, 17mp2an 692 . . . . 5 (𝑋cn𝑆) ⊆ (𝑋cn→ℂ)
1918, 1sseldi 3876 . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2018, 5sseldi 3876 . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
2113, 15, 19, 20cncfmpt2f 23670 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
22 cncffvrn 23653 . . 3 ((𝑆 ⊆ ℂ ∧ (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ)) → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2312, 21, 22sylancr 590 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆) ↔ (𝑥𝑋 ↦ (𝐴𝐹𝐵)):𝑋𝑆))
2411, 23mpbird 260 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wss 3844  cmpt 5111  wf 6336  cfv 6340  (class class class)co 7173  cc 10616  TopOpenctopn 16801  fldccnfld 20220   Cn ccn 21978   ×t ctx 22314  cnccncf 23631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fi 8951  df-sup 8982  df-inf 8983  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-fz 12985  df-seq 13464  df-exp 13525  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-plusg 16684  df-mulr 16685  df-starv 16686  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-rest 16802  df-topn 16803  df-topgen 16823  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-cnfld 20221  df-top 21648  df-topon 21665  df-topsp 21687  df-bases 21700  df-cn 21981  df-cnp 21982  df-tx 22316  df-xms 23076  df-ms 23077  df-cncf 23633
This theorem is referenced by:  cmvth  24746  dvle  24762  dvfsumle  24776  dvfsumge  24777  dvfsumlem2  24782
  Copyright terms: Public domain W3C validator