MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptelrn Structured version   Visualization version   GIF version

Theorem fvmptelrn 6969
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
fvmptelrn.1 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
Assertion
Ref Expression
fvmptelrn ((𝜑𝑥𝐴) → 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fvmptelrn
StepHypRef Expression
1 fvmptelrn.1 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32fmpt 6966 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
41, 3sylibr 233 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
54r19.21bi 3132 1 ((𝜑𝑥𝐴) → 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063  cmpt 5153  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  rlimmptrcl  15245  lo1mptrcl  15259  o1mptrcl  15260  frlmgsum  20889  uvcresum  20910  psrass1lemOLD  21053  psrass1lem  21056  txcnp  22679  ptcnp  22681  ptcn  22686  cnmpt11  22722  cnmpt1t  22724  cnmpt12  22726  cnmptkp  22739  cnmptk1  22740  cnmptkk  22742  cnmptk1p  22744  cnmptk2  22745  cnmpt1plusg  23146  cnmpt1vsca  23253  cnmpt1ds  23911  cncfcompt2  23977  cncfmpt2ss  23985  cnmpt1ip  24316  divcncf  24516  mbfmptcl  24705  i1fposd  24777  itgss3  24884  dvmptcl  25028  dvmptco  25041  dvle  25076  dvfsumle  25090  dvfsumge  25091  dvmptrecl  25093  itgparts  25116  itgsubstlem  25117  itgsubst  25118  ulmss  25461  ulmdvlem2  25465  itgulm2  25473  logtayl  25720  intlewftc  39997  cncfcompt  43314  cncficcgt0  43319  itgsubsticclem  43406  sge0iunmptlemre  43843  hoicvrrex  43984  smfadd  44187  smfpimioompt  44207  smfinfmpt  44239
  Copyright terms: Public domain W3C validator