Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptelrn | Structured version Visualization version GIF version |
Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fvmptelrn.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Ref | Expression |
---|---|
fvmptelrn | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptelrn.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
2 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | fmpt 6966 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
4 | 1, 3 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | 4 | r19.21bi 3132 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ↦ cmpt 5153 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: rlimmptrcl 15245 lo1mptrcl 15259 o1mptrcl 15260 frlmgsum 20889 uvcresum 20910 psrass1lemOLD 21053 psrass1lem 21056 txcnp 22679 ptcnp 22681 ptcn 22686 cnmpt11 22722 cnmpt1t 22724 cnmpt12 22726 cnmptkp 22739 cnmptk1 22740 cnmptkk 22742 cnmptk1p 22744 cnmptk2 22745 cnmpt1plusg 23146 cnmpt1vsca 23253 cnmpt1ds 23911 cncfcompt2 23977 cncfmpt2ss 23985 cnmpt1ip 24316 divcncf 24516 mbfmptcl 24705 i1fposd 24777 itgss3 24884 dvmptcl 25028 dvmptco 25041 dvle 25076 dvfsumle 25090 dvfsumge 25091 dvmptrecl 25093 itgparts 25116 itgsubstlem 25117 itgsubst 25118 ulmss 25461 ulmdvlem2 25465 itgulm2 25473 logtayl 25720 intlewftc 39997 cncfcompt 43314 cncficcgt0 43319 itgsubsticclem 43406 sge0iunmptlemre 43843 hoicvrrex 43984 smfadd 44187 smfpimioompt 44207 smfinfmpt 44239 |
Copyright terms: Public domain | W3C validator |