|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expcnfg | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 24953. (Contributed by Glauco Siliprandi, 29-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| expcnfg.1 | ⊢ Ⅎ𝑥𝐹 | 
| expcnfg.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | 
| expcnfg.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) | 
| Ref | Expression | 
|---|---|
| expcnfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑡((𝐹‘𝑥)↑𝑁) | |
| 2 | expcnfg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑥𝑡 | |
| 4 | 2, 3 | nffv 6916 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑡) | 
| 5 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑥↑ | |
| 6 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝑁 | |
| 7 | 4, 5, 6 | nfov 7461 | . . . . 5 ⊢ Ⅎ𝑥((𝐹‘𝑡)↑𝑁) | 
| 8 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) | |
| 9 | 8 | oveq1d 7446 | . . . . 5 ⊢ (𝑥 = 𝑡 → ((𝐹‘𝑥)↑𝑁) = ((𝐹‘𝑡)↑𝑁)) | 
| 10 | 1, 7, 9 | cbvmpt 5253 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) | 
| 11 | expcnfg.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
| 12 | cncff 24919 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | 
| 14 | 13 | ffvelcdmda 7104 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) | 
| 15 | expcnfg.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝑁 ∈ ℕ0) | 
| 17 | 14, 16 | expcld 14186 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) ∈ ℂ) | 
| 18 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑡) → (𝑥↑𝑁) = ((𝐹‘𝑡)↑𝑁)) | |
| 19 | eqid 2737 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) | |
| 20 | 4, 7, 18, 19 | fvmptf 7037 | . . . . . . 7 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ ((𝐹‘𝑡)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) | 
| 21 | 14, 17, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) | 
| 22 | 21 | eqcomd 2743 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡))) | 
| 23 | 22 | mpteq2dva 5242 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) | 
| 24 | 10, 23 | eqtrid 2789 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) | 
| 25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 26 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0) | 
| 27 | 25, 26 | expcld 14186 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) ∈ ℂ) | 
| 28 | 27 | fmpttd 7135 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ) | 
| 29 | fcompt 7153 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) | |
| 30 | 28, 13, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) | 
| 31 | 24, 30 | eqtr4d 2780 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)) | 
| 32 | expcncf 24953 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) | |
| 33 | 15, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) | 
| 34 | 11, 33 | cncfco 24933 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) | 
| 35 | 31, 34 | eqeltrd 2841 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2890 ↦ cmpt 5225 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℕ0cn0 12526 ↑cexp 14102 –cn→ccncf 24902 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-tx 23570 df-hmeo 23763 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 | 
| This theorem is referenced by: ibliccsinexp 45966 itgsinexplem1 45969 itgsinexp 45970 | 
| Copyright terms: Public domain | W3C validator |