Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expcnfg Structured version   Visualization version   GIF version

Theorem expcnfg 42807
Description: If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 23823. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
expcnfg.1 𝑥𝐹
expcnfg.2 (𝜑𝐹 ∈ (𝐴cn→ℂ))
expcnfg.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
expcnfg (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)↑𝑁)) ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem expcnfg
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2904 . . . . 5 𝑡((𝐹𝑥)↑𝑁)
2 expcnfg.1 . . . . . . 7 𝑥𝐹
3 nfcv 2904 . . . . . . 7 𝑥𝑡
42, 3nffv 6727 . . . . . 6 𝑥(𝐹𝑡)
5 nfcv 2904 . . . . . 6 𝑥
6 nfcv 2904 . . . . . 6 𝑥𝑁
74, 5, 6nfov 7243 . . . . 5 𝑥((𝐹𝑡)↑𝑁)
8 fveq2 6717 . . . . . 6 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
98oveq1d 7228 . . . . 5 (𝑥 = 𝑡 → ((𝐹𝑥)↑𝑁) = ((𝐹𝑡)↑𝑁))
101, 7, 9cbvmpt 5156 . . . 4 (𝑥𝐴 ↦ ((𝐹𝑥)↑𝑁)) = (𝑡𝐴 ↦ ((𝐹𝑡)↑𝑁))
11 expcnfg.2 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐴cn→ℂ))
12 cncff 23790 . . . . . . . . 9 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
1311, 12syl 17 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
1413ffvelrnda 6904 . . . . . . 7 ((𝜑𝑡𝐴) → (𝐹𝑡) ∈ ℂ)
15 expcnfg.3 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
1615adantr 484 . . . . . . . 8 ((𝜑𝑡𝐴) → 𝑁 ∈ ℕ0)
1714, 16expcld 13716 . . . . . . 7 ((𝜑𝑡𝐴) → ((𝐹𝑡)↑𝑁) ∈ ℂ)
18 oveq1 7220 . . . . . . . 8 (𝑥 = (𝐹𝑡) → (𝑥𝑁) = ((𝐹𝑡)↑𝑁))
19 eqid 2737 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁))
204, 7, 18, 19fvmptf 6839 . . . . . . 7 (((𝐹𝑡) ∈ ℂ ∧ ((𝐹𝑡)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑡)) = ((𝐹𝑡)↑𝑁))
2114, 17, 20syl2anc 587 . . . . . 6 ((𝜑𝑡𝐴) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑡)) = ((𝐹𝑡)↑𝑁))
2221eqcomd 2743 . . . . 5 ((𝜑𝑡𝐴) → ((𝐹𝑡)↑𝑁) = ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑡)))
2322mpteq2dva 5150 . . . 4 (𝜑 → (𝑡𝐴 ↦ ((𝐹𝑡)↑𝑁)) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑡))))
2410, 23syl5eq 2790 . . 3 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)↑𝑁)) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑡))))
25 simpr 488 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
2615adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
2725, 26expcld 13716 . . . . 5 ((𝜑𝑥 ∈ ℂ) → (𝑥𝑁) ∈ ℂ)
2827fmpttd 6932 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)):ℂ⟶ℂ)
29 fcompt 6948 . . . 4 (((𝑥 ∈ ℂ ↦ (𝑥𝑁)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑡))))
3028, 13, 29syl2anc 587 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) = (𝑡𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥𝑁))‘(𝐹𝑡))))
3124, 30eqtr4d 2780 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)↑𝑁)) = ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹))
32 expcncf 23823 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
3315, 32syl 17 . . 3 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
3411, 33cncfco 23804 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∘ 𝐹) ∈ (𝐴cn→ℂ))
3531, 34eqeltrd 2838 1 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)↑𝑁)) ∈ (𝐴cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wnfc 2884  cmpt 5135  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  0cn0 12090  cexp 13635  cnccncf 23773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-cnp 22125  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775
This theorem is referenced by:  ibliccsinexp  43167  itgsinexplem1  43170  itgsinexp  43171
  Copyright terms: Public domain W3C validator