| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expcnfg | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 24850. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| expcnfg.1 | ⊢ Ⅎ𝑥𝐹 |
| expcnfg.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
| expcnfg.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| expcnfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑡((𝐹‘𝑥)↑𝑁) | |
| 2 | expcnfg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥𝑡 | |
| 4 | 2, 3 | nffv 6840 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑡) |
| 5 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥↑ | |
| 6 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥𝑁 | |
| 7 | 4, 5, 6 | nfov 7384 | . . . . 5 ⊢ Ⅎ𝑥((𝐹‘𝑡)↑𝑁) |
| 8 | fveq2 6830 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) | |
| 9 | 8 | oveq1d 7369 | . . . . 5 ⊢ (𝑥 = 𝑡 → ((𝐹‘𝑥)↑𝑁) = ((𝐹‘𝑡)↑𝑁)) |
| 10 | 1, 7, 9 | cbvmpt 5197 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) |
| 11 | expcnfg.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
| 12 | cncff 24816 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 14 | 13 | ffvelcdmda 7025 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
| 15 | expcnfg.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝑁 ∈ ℕ0) |
| 17 | 14, 16 | expcld 14057 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) ∈ ℂ) |
| 18 | oveq1 7361 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑡) → (𝑥↑𝑁) = ((𝐹‘𝑡)↑𝑁)) | |
| 19 | eqid 2733 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) | |
| 20 | 4, 7, 18, 19 | fvmptf 6958 | . . . . . . 7 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ ((𝐹‘𝑡)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) |
| 21 | 14, 17, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) |
| 22 | 21 | eqcomd 2739 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡))) |
| 23 | 22 | mpteq2dva 5188 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
| 24 | 10, 23 | eqtrid 2780 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
| 25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 26 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0) |
| 27 | 25, 26 | expcld 14057 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) ∈ ℂ) |
| 28 | 27 | fmpttd 7056 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ) |
| 29 | fcompt 7074 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) | |
| 30 | 28, 13, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
| 31 | 24, 30 | eqtr4d 2771 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)) |
| 32 | expcncf 24850 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) | |
| 33 | 15, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| 34 | 11, 33 | cncfco 24830 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 35 | 31, 34 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 ↦ cmpt 5176 ∘ ccom 5625 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℕ0cn0 12390 ↑cexp 13972 –cn→ccncf 24799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cn 23145 df-cnp 23146 df-tx 23480 df-hmeo 23673 df-xms 24238 df-ms 24239 df-tms 24240 df-cncf 24801 |
| This theorem is referenced by: ibliccsinexp 46076 itgsinexplem1 46079 itgsinexp 46080 |
| Copyright terms: Public domain | W3C validator |