| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > expcnfg | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 24848. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| expcnfg.1 | ⊢ Ⅎ𝑥𝐹 |
| expcnfg.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
| expcnfg.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| expcnfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑡((𝐹‘𝑥)↑𝑁) | |
| 2 | expcnfg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥𝑡 | |
| 4 | 2, 3 | nffv 6832 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑡) |
| 5 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥↑ | |
| 6 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝑁 | |
| 7 | 4, 5, 6 | nfov 7376 | . . . . 5 ⊢ Ⅎ𝑥((𝐹‘𝑡)↑𝑁) |
| 8 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) | |
| 9 | 8 | oveq1d 7361 | . . . . 5 ⊢ (𝑥 = 𝑡 → ((𝐹‘𝑥)↑𝑁) = ((𝐹‘𝑡)↑𝑁)) |
| 10 | 1, 7, 9 | cbvmpt 5193 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) |
| 11 | expcnfg.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
| 12 | cncff 24814 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 14 | 13 | ffvelcdmda 7017 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
| 15 | expcnfg.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝑁 ∈ ℕ0) |
| 17 | 14, 16 | expcld 14053 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) ∈ ℂ) |
| 18 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑡) → (𝑥↑𝑁) = ((𝐹‘𝑡)↑𝑁)) | |
| 19 | eqid 2731 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) | |
| 20 | 4, 7, 18, 19 | fvmptf 6950 | . . . . . . 7 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ ((𝐹‘𝑡)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) |
| 21 | 14, 17, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) |
| 22 | 21 | eqcomd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡))) |
| 23 | 22 | mpteq2dva 5184 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
| 24 | 10, 23 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
| 25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 26 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0) |
| 27 | 25, 26 | expcld 14053 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) ∈ ℂ) |
| 28 | 27 | fmpttd 7048 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ) |
| 29 | fcompt 7066 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) | |
| 30 | 28, 13, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
| 31 | 24, 30 | eqtr4d 2769 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)) |
| 32 | expcncf 24848 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) | |
| 33 | 15, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| 34 | 11, 33 | cncfco 24828 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 35 | 31, 34 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 ↦ cmpt 5172 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℕ0cn0 12381 ↑cexp 13968 –cn→ccncf 24797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cn 23143 df-cnp 23144 df-tx 23478 df-hmeo 23671 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 |
| This theorem is referenced by: ibliccsinexp 45995 itgsinexplem1 45998 itgsinexp 45999 |
| Copyright terms: Public domain | W3C validator |