![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzsuc2 | Structured version Visualization version GIF version |
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fzsuc2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12805 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) | |
2 | zcn 12505 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
3 | ax-1cn 11110 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
4 | npcan 11411 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
5 | 2, 3, 4 | sylancl 587 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀) |
6 | 5 | oveq2d 7374 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀)) |
7 | uncom 4114 | . . . . . . . 8 ⊢ (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅) | |
8 | un0 4351 | . . . . . . . 8 ⊢ ({𝑀} ∪ ∅) = {𝑀} | |
9 | 7, 8 | eqtri 2765 | . . . . . . 7 ⊢ (∅ ∪ {𝑀}) = {𝑀} |
10 | zre 12504 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
11 | 10 | ltm1d 12088 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀) |
12 | peano2zm 12547 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
13 | fzn 13458 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) | |
14 | 12, 13 | mpdan 686 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
15 | 11, 14 | mpbid 231 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅) |
16 | 5 | sneqd 4599 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀}) |
17 | 15, 16 | uneq12d 4125 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀})) |
18 | fzsn 13484 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
19 | 9, 17, 18 | 3eqtr4a 2803 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀)) |
20 | 6, 19 | eqtr4d 2780 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
21 | oveq1 7365 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1)) | |
22 | 21 | oveq2d 7374 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1))) |
23 | oveq2 7366 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1))) | |
24 | 21 | sneqd 4599 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)}) |
25 | 23, 24 | uneq12d 4125 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
26 | 22, 25 | eqeq12d 2753 | . . . . 5 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))) |
27 | 20, 26 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))) |
28 | 27 | imp 408 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
29 | 5 | fveq2d 6847 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
30 | 29 | eleq2d 2824 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
31 | 30 | biimpa 478 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
32 | fzsuc 13489 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
34 | 28, 33 | jaodan 957 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
35 | 1, 34 | sylan2 594 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∪ cun 3909 ∅c0 4283 {csn 4587 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 ℂcc 11050 1c1 11053 + caddc 11055 < clt 11190 − cmin 11386 ℤcz 12500 ℤ≥cuz 12764 ...cfz 13425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-n0 12415 df-z 12501 df-uz 12765 df-fz 13426 |
This theorem is referenced by: fseq1p1m1 13516 fzennn 13874 fsumm1 15637 fprodm1 15851 prmreclem4 16792 ppiprm 26503 ppinprm 26504 chtprm 26505 chtnprm 26506 poimirlem3 36084 poimirlem4 36085 lcmfunnnd 40472 mapfzcons 41042 |
Copyright terms: Public domain | W3C validator |