![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzsuc2 | Structured version Visualization version GIF version |
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fzsuc2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12132 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) | |
2 | zcn 11840 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
3 | ax-1cn 10448 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
4 | npcan 10749 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀) |
6 | 5 | oveq2d 7039 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀)) |
7 | uncom 4056 | . . . . . . . 8 ⊢ (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅) | |
8 | un0 4270 | . . . . . . . 8 ⊢ ({𝑀} ∪ ∅) = {𝑀} | |
9 | 7, 8 | eqtri 2821 | . . . . . . 7 ⊢ (∅ ∪ {𝑀}) = {𝑀} |
10 | zre 11839 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
11 | 10 | ltm1d 11426 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀) |
12 | peano2zm 11879 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
13 | fzn 12777 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) | |
14 | 12, 13 | mpdan 683 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
15 | 11, 14 | mpbid 233 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅) |
16 | 5 | sneqd 4490 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀}) |
17 | 15, 16 | uneq12d 4067 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀})) |
18 | fzsn 12803 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
19 | 9, 17, 18 | 3eqtr4a 2859 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀)) |
20 | 6, 19 | eqtr4d 2836 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
21 | oveq1 7030 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1)) | |
22 | 21 | oveq2d 7039 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1))) |
23 | oveq2 7031 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1))) | |
24 | 21 | sneqd 4490 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)}) |
25 | 23, 24 | uneq12d 4067 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
26 | 22, 25 | eqeq12d 2812 | . . . . 5 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))) |
27 | 20, 26 | syl5ibrcom 248 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))) |
28 | 27 | imp 407 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
29 | 5 | fveq2d 6549 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
30 | 29 | eleq2d 2870 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
31 | 30 | biimpa 477 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
32 | fzsuc 12808 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
34 | 28, 33 | jaodan 952 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
35 | 1, 34 | sylan2 592 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1525 ∈ wcel 2083 ∪ cun 3863 ∅c0 4217 {csn 4478 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 ℂcc 10388 1c1 10391 + caddc 10393 < clt 10528 − cmin 10723 ℤcz 11835 ℤ≥cuz 12097 ...cfz 12746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 |
This theorem is referenced by: fseq1p1m1 12835 fzennn 13190 fsumm1 14943 fprodm1 15158 prmreclem4 16088 ppiprm 25414 ppinprm 25415 chtprm 25416 chtnprm 25417 poimirlem3 34447 poimirlem4 34448 mapfzcons 38819 |
Copyright terms: Public domain | W3C validator |