| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsuc2 | Structured version Visualization version GIF version | ||
| Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fzsuc2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzp1 12891 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) | |
| 2 | zcn 12591 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 3 | ax-1cn 11185 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 4 | npcan 11489 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀) |
| 6 | 5 | oveq2d 7419 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀)) |
| 7 | uncom 4133 | . . . . . . . 8 ⊢ (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅) | |
| 8 | un0 4369 | . . . . . . . 8 ⊢ ({𝑀} ∪ ∅) = {𝑀} | |
| 9 | 7, 8 | eqtri 2758 | . . . . . . 7 ⊢ (∅ ∪ {𝑀}) = {𝑀} |
| 10 | zre 12590 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 11 | 10 | ltm1d 12172 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀) |
| 12 | peano2zm 12633 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
| 13 | fzn 13555 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) | |
| 14 | 12, 13 | mpdan 687 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
| 15 | 11, 14 | mpbid 232 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅) |
| 16 | 5 | sneqd 4613 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀}) |
| 17 | 15, 16 | uneq12d 4144 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀})) |
| 18 | fzsn 13581 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
| 19 | 9, 17, 18 | 3eqtr4a 2796 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀)) |
| 20 | 6, 19 | eqtr4d 2773 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
| 21 | oveq1 7410 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1)) | |
| 22 | 21 | oveq2d 7419 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1))) |
| 23 | oveq2 7411 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1))) | |
| 24 | 21 | sneqd 4613 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)}) |
| 25 | 23, 24 | uneq12d 4144 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
| 26 | 22, 25 | eqeq12d 2751 | . . . . 5 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))) |
| 27 | 20, 26 | syl5ibrcom 247 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))) |
| 28 | 27 | imp 406 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| 29 | 5 | fveq2d 6879 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
| 30 | 29 | eleq2d 2820 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
| 31 | 30 | biimpa 476 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 32 | fzsuc 13586 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | |
| 33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| 34 | 28, 33 | jaodan 959 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| 35 | 1, 34 | sylan2 593 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∅c0 4308 {csn 4601 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 1c1 11128 + caddc 11130 < clt 11267 − cmin 11464 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 |
| This theorem is referenced by: fseq1p1m1 13613 fzennn 13984 fsumm1 15765 fprodm1 15981 prmreclem4 16937 ppiprm 27111 ppinprm 27112 chtprm 27113 chtnprm 27114 poimirlem3 37593 poimirlem4 37594 lcmfunnnd 41971 mapfzcons 42686 |
| Copyright terms: Public domain | W3C validator |