![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzsuc2 | Structured version Visualization version GIF version |
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fzsuc2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12901 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 − 1)) → (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) | |
2 | zcn 12601 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
3 | ax-1cn 11204 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
4 | npcan 11507 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) + 1) = 𝑀) | |
5 | 2, 3, 4 | sylancl 584 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) + 1) = 𝑀) |
6 | 5 | oveq2d 7442 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = (𝑀...𝑀)) |
7 | uncom 4154 | . . . . . . . 8 ⊢ (∅ ∪ {𝑀}) = ({𝑀} ∪ ∅) | |
8 | un0 4394 | . . . . . . . 8 ⊢ ({𝑀} ∪ ∅) = {𝑀} | |
9 | 7, 8 | eqtri 2756 | . . . . . . 7 ⊢ (∅ ∪ {𝑀}) = {𝑀} |
10 | zre 12600 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
11 | 10 | ltm1d 12184 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) < 𝑀) |
12 | peano2zm 12643 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
13 | fzn 13557 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) | |
14 | 12, 13 | mpdan 685 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅)) |
15 | 11, 14 | mpbid 231 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 − 1)) = ∅) |
16 | 5 | sneqd 4644 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → {((𝑀 − 1) + 1)} = {𝑀}) |
17 | 15, 16 | uneq12d 4165 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (∅ ∪ {𝑀})) |
18 | fzsn 13583 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
19 | 9, 17, 18 | 3eqtr4a 2794 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}) = (𝑀...𝑀)) |
20 | 6, 19 | eqtr4d 2771 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
21 | oveq1 7433 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑁 + 1) = ((𝑀 − 1) + 1)) | |
22 | 21 | oveq2d 7442 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = (𝑀...((𝑀 − 1) + 1))) |
23 | oveq2 7434 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → (𝑀...𝑁) = (𝑀...(𝑀 − 1))) | |
24 | 21 | sneqd 4644 | . . . . . . 7 ⊢ (𝑁 = (𝑀 − 1) → {(𝑁 + 1)} = {((𝑀 − 1) + 1)}) |
25 | 23, 24 | uneq12d 4165 | . . . . . 6 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...𝑁) ∪ {(𝑁 + 1)}) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)})) |
26 | 22, 25 | eqeq12d 2744 | . . . . 5 ⊢ (𝑁 = (𝑀 − 1) → ((𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↔ (𝑀...((𝑀 − 1) + 1)) = ((𝑀...(𝑀 − 1)) ∪ {((𝑀 − 1) + 1)}))) |
27 | 20, 26 | syl5ibrcom 246 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 = (𝑀 − 1) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))) |
28 | 27 | imp 405 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = (𝑀 − 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
29 | 5 | fveq2d 6906 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
30 | 29 | eleq2d 2815 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
31 | 30 | biimpa 475 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
32 | fzsuc 13588 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | |
33 | 31, 32 | syl 17 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
34 | 28, 33 | jaodan 955 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 = (𝑀 − 1) ∨ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1)))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
35 | 1, 34 | sylan2 591 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∪ cun 3947 ∅c0 4326 {csn 4632 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 1c1 11147 + caddc 11149 < clt 11286 − cmin 11482 ℤcz 12596 ℤ≥cuz 12860 ...cfz 13524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 |
This theorem is referenced by: fseq1p1m1 13615 fzennn 13973 fsumm1 15737 fprodm1 15951 prmreclem4 16895 ppiprm 27103 ppinprm 27104 chtprm 27105 chtnprm 27106 poimirlem3 37129 poimirlem4 37130 lcmfunnnd 41515 mapfzcons 42167 |
Copyright terms: Public domain | W3C validator |