MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz10 Structured version   Visualization version   GIF version

Theorem fz10 12921
Description: There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fz10 (1...0) = ∅

Proof of Theorem fz10
StepHypRef Expression
1 0lt1 11154 . 2 0 < 1
2 1z 12004 . . 3 1 ∈ ℤ
3 0z 11984 . . 3 0 ∈ ℤ
4 fzn 12916 . . 3 ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 < 1 ↔ (1...0) = ∅))
52, 3, 4mp2an 688 . 2 (0 < 1 ↔ (1...0) = ∅)
61, 5mpbi 231 1 (1...0) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 207   = wceq 1530  wcel 2107  c0 4294   class class class wbr 5062  (class class class)co 7151  0cc0 10529  1c1 10530   < clt 10667  cz 11973  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-z 11974  df-uz 12236  df-fz 12886
This theorem is referenced by:  fzennn  13329  hasheq0  13717  arisum  15207  fprodfac  15319  prmo0  16364  mulgnn0gsum  18166  imasdsf1olem  22898  ehl0base  23934  ehl0  23935  logfac  25097  birthdaylem2  25444  harmonicbnd3  25499  fsumharmonic  25503  gausslemma2dlem4  25859  lgsquadlem2  25871  logdivbnd  26046  pntrlog2bndlem4  26070  ballotlemfval0  31639  subfac0  32308  bcprod  32854  poimirlem5  34764  poimirlem13  34772  poimirlem22  34781  poimirlem28  34787  fzsplit1nn0  39212  rp-isfinite6  39745
  Copyright terms: Public domain W3C validator