MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Visualization version   GIF version

Theorem icccmplem3 24860
Description: Lemma for icccmp 24861. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem3 (𝜑𝐵𝑆)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐴,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑥,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑧)   𝑆(𝑥,𝑧)   𝐽(𝑥)

Proof of Theorem icccmplem3
Dummy variables 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 icccmp.4 . . . . . . . 8 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
32ssrab3 4092 . . . . . . 7 𝑆 ⊆ (𝐴[,]𝐵)
4 icccmp.5 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5 icccmp.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
6 iccssre 13466 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
74, 5, 6syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
83, 7sstrid 4007 . . . . . 6 (𝜑𝑆 ⊆ ℝ)
9 icccmp.1 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
10 icccmp.2 . . . . . . . . 9 𝑇 = (𝐽t (𝐴[,]𝐵))
11 icccmp.3 . . . . . . . . 9 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
12 icccmp.7 . . . . . . . . 9 (𝜑𝐴𝐵)
13 icccmp.8 . . . . . . . . 9 (𝜑𝑈𝐽)
149, 10, 11, 2, 4, 5, 12, 13, 1icccmplem1 24858 . . . . . . . 8 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
1514simpld 494 . . . . . . 7 (𝜑𝐴𝑆)
1615ne0d 4348 . . . . . 6 (𝜑𝑆 ≠ ∅)
1714simprd 495 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
18 brralrspcev 5208 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
195, 17, 18syl2anc 584 . . . . . 6 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
208, 16, 19suprcld 12229 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
218, 16, 19, 15suprubd 12228 . . . . 5 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
22 suprleub 12232 . . . . . . 7 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
238, 16, 19, 5, 22syl31anc 1372 . . . . . 6 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
2417, 23mpbird 257 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
25 elicc2 13449 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
264, 5, 25syl2anc 584 . . . . 5 (𝜑 → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
2720, 21, 24, 26mpbir3and 1341 . . . 4 (𝜑 → sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵))
281, 27sseldd 3996 . . 3 (𝜑 → sup(𝑆, ℝ, < ) ∈ 𝑈)
29 eluni2 4916 . . 3 (sup(𝑆, ℝ, < ) ∈ 𝑈 ↔ ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3028, 29sylib 218 . 2 (𝜑 → ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3113sselda 3995 . . . . 5 ((𝜑𝑢𝑈) → 𝑢𝐽)
3211rexmet 24827 . . . . . . 7 𝐷 ∈ (∞Met‘ℝ)
33 eqid 2735 . . . . . . . . . 10 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3411, 33tgioo 24832 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘𝐷)
359, 34eqtri 2763 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
3635mopni2 24522 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
3732, 36mp3an1 1447 . . . . . 6 ((𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
3837ex 412 . . . . 5 (𝑢𝐽 → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
3931, 38syl 17 . . . 4 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
404ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
415ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
4212ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴𝐵)
4313ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑈𝐽)
441ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑈)
45 simplr 769 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑢𝑈)
46 simprl 771 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑤 ∈ ℝ+)
47 simprr 773 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
48 eqid 2735 . . . . . 6 sup(𝑆, ℝ, < ) = sup(𝑆, ℝ, < )
49 eqid 2735 . . . . . 6 if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵) = if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵)
509, 10, 11, 2, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49icccmplem2 24859 . . . . 5 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵𝑆)
5150rexlimdvaa 3154 . . . 4 ((𝜑𝑢𝑈) → (∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢𝐵𝑆))
5239, 51syld 47 . . 3 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
5352rexlimdva 3153 . 2 (𝜑 → (∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
5430, 53mpd 15 1 (𝜑𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  cin 3962  wss 3963  c0 4339  ifcif 4531  𝒫 cpw 4605   cuni 4912   class class class wbr 5148   × cxp 5687  ran crn 5690  cres 5691  ccom 5693  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  cr 11152   + caddc 11156   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  +crp 13032  (,)cioo 13384  [,]cicc 13387  abscabs 15270  t crest 17467  topGenctg 17484  ∞Metcxmet 21367  ballcbl 21369  MetOpencmopn 21372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-icc 13391  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by:  icccmp  24861
  Copyright terms: Public domain W3C validator