MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem3 Structured version   Visualization version   GIF version

Theorem icccmplem3 24741
Description: Lemma for icccmp 24742. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem3 (𝜑𝐵𝑆)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐴,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑥,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑧)   𝑆(𝑥,𝑧)   𝐽(𝑥)

Proof of Theorem icccmplem3
Dummy variables 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.9 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
2 icccmp.4 . . . . . . . 8 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
32ssrab3 4032 . . . . . . 7 𝑆 ⊆ (𝐴[,]𝐵)
4 icccmp.5 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
5 icccmp.6 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
6 iccssre 13329 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
74, 5, 6syl2anc 584 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
83, 7sstrid 3946 . . . . . 6 (𝜑𝑆 ⊆ ℝ)
9 icccmp.1 . . . . . . . . 9 𝐽 = (topGen‘ran (,))
10 icccmp.2 . . . . . . . . 9 𝑇 = (𝐽t (𝐴[,]𝐵))
11 icccmp.3 . . . . . . . . 9 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
12 icccmp.7 . . . . . . . . 9 (𝜑𝐴𝐵)
13 icccmp.8 . . . . . . . . 9 (𝜑𝑈𝐽)
149, 10, 11, 2, 4, 5, 12, 13, 1icccmplem1 24739 . . . . . . . 8 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
1514simpld 494 . . . . . . 7 (𝜑𝐴𝑆)
1615ne0d 4292 . . . . . 6 (𝜑𝑆 ≠ ∅)
1714simprd 495 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
18 brralrspcev 5151 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
195, 17, 18syl2anc 584 . . . . . 6 (𝜑 → ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣)
208, 16, 19suprcld 12085 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
218, 16, 19, 15suprubd 12084 . . . . 5 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
22 suprleub 12088 . . . . . . 7 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑦𝑆 𝑦𝑣) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
238, 16, 19, 5, 22syl31anc 1375 . . . . . 6 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑦𝑆 𝑦𝐵))
2417, 23mpbird 257 . . . . 5 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
25 elicc2 13311 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
264, 5, 25syl2anc 584 . . . . 5 (𝜑 → (sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵) ↔ (sup(𝑆, ℝ, < ) ∈ ℝ ∧ 𝐴 ≤ sup(𝑆, ℝ, < ) ∧ sup(𝑆, ℝ, < ) ≤ 𝐵)))
2720, 21, 24, 26mpbir3and 1343 . . . 4 (𝜑 → sup(𝑆, ℝ, < ) ∈ (𝐴[,]𝐵))
281, 27sseldd 3935 . . 3 (𝜑 → sup(𝑆, ℝ, < ) ∈ 𝑈)
29 eluni2 4863 . . 3 (sup(𝑆, ℝ, < ) ∈ 𝑈 ↔ ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3028, 29sylib 218 . 2 (𝜑 → ∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢)
3113sselda 3934 . . . . 5 ((𝜑𝑢𝑈) → 𝑢𝐽)
3211rexmet 24707 . . . . . . 7 𝐷 ∈ (∞Met‘ℝ)
33 eqid 2731 . . . . . . . . . 10 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3411, 33tgioo 24712 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘𝐷)
359, 34eqtri 2754 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
3635mopni2 24409 . . . . . . 7 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
3732, 36mp3an1 1450 . . . . . 6 ((𝑢𝐽 ∧ sup(𝑆, ℝ, < ) ∈ 𝑢) → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
3837ex 412 . . . . 5 (𝑢𝐽 → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
3931, 38syl 17 . . . 4 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢 → ∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢))
404ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
415ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
4212ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐴𝐵)
4313ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑈𝐽)
441ad2antrr 726 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑈)
45 simplr 768 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑢𝑈)
46 simprl 770 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝑤 ∈ ℝ+)
47 simprr 772 . . . . . 6 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)
48 eqid 2731 . . . . . 6 sup(𝑆, ℝ, < ) = sup(𝑆, ℝ, < )
49 eqid 2731 . . . . . 6 if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵) = if((sup(𝑆, ℝ, < ) + (𝑤 / 2)) ≤ 𝐵, (sup(𝑆, ℝ, < ) + (𝑤 / 2)), 𝐵)
509, 10, 11, 2, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49icccmplem2 24740 . . . . 5 (((𝜑𝑢𝑈) ∧ (𝑤 ∈ ℝ+ ∧ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢)) → 𝐵𝑆)
5150rexlimdvaa 3134 . . . 4 ((𝜑𝑢𝑈) → (∃𝑤 ∈ ℝ+ (sup(𝑆, ℝ, < )(ball‘𝐷)𝑤) ⊆ 𝑢𝐵𝑆))
5239, 51syld 47 . . 3 ((𝜑𝑢𝑈) → (sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
5352rexlimdva 3133 . 2 (𝜑 → (∃𝑢𝑈 sup(𝑆, ℝ, < ) ∈ 𝑢𝐵𝑆))
5430, 53mpd 15 1 (𝜑𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cin 3901  wss 3902  c0 4283  ifcif 4475  𝒫 cpw 4550   cuni 4859   class class class wbr 5091   × cxp 5614  ran crn 5617  cres 5618  ccom 5620  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  cr 11005   + caddc 11009   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  2c2 12180  +crp 12890  (,)cioo 13245  [,]cicc 13248  abscabs 15141  t crest 17324  topGenctg 17341  ∞Metcxmet 21277  ballcbl 21279  MetOpencmopn 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-bases 22862
This theorem is referenced by:  icccmp  24742
  Copyright terms: Public domain W3C validator