![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iirev | Structured version Visualization version GIF version |
Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iirev | ⊢ (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11211 | . . . . 5 ⊢ 1 ∈ ℝ | |
2 | resubcl 11521 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (1 − 𝑋) ∈ ℝ) | |
3 | 1, 2 | mpan 687 | . . . 4 ⊢ (𝑋 ∈ ℝ → (1 − 𝑋) ∈ ℝ) |
4 | 3 | 3ad2ant1 1130 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → (1 − 𝑋) ∈ ℝ) |
5 | simp3 1135 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → 𝑋 ≤ 1) | |
6 | simp1 1133 | . . . . 5 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → 𝑋 ∈ ℝ) | |
7 | subge0 11724 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1)) | |
8 | 1, 6, 7 | sylancr 586 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1)) |
9 | 5, 8 | mpbird 257 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → 0 ≤ (1 − 𝑋)) |
10 | simp2 1134 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → 0 ≤ 𝑋) | |
11 | subge02 11727 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1)) | |
12 | 1, 6, 11 | sylancr 586 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1)) |
13 | 10, 12 | mpbid 231 | . . 3 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → (1 − 𝑋) ≤ 1) |
14 | 4, 9, 13 | 3jca 1125 | . 2 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) → ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1)) |
15 | elicc01 13440 | . 2 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) | |
16 | elicc01 13440 | . 2 ⊢ ((1 − 𝑋) ∈ (0[,]1) ↔ ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1)) | |
17 | 14, 15, 16 | 3imtr4i 292 | 1 ⊢ (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5138 (class class class)co 7401 ℝcr 11105 0cc0 11106 1c1 11107 ≤ cle 11246 − cmin 11441 [,]cicc 13324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-icc 13328 |
This theorem is referenced by: iirevcn 24773 icccvx 24797 phtpycom 24836 pcorev2 24877 pi1xfrcnv 24906 dvlipcn 25849 efcvx 26303 logccv 26513 leibpi 26790 cvxcl 26833 resconn 34726 |
Copyright terms: Public domain | W3C validator |