MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iirev Structured version   Visualization version   GIF version

Theorem iirev 23252
Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iirev (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1))

Proof of Theorem iirev
StepHypRef Expression
1 1re 10438 . . . . 5 1 ∈ ℝ
2 resubcl 10750 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (1 − 𝑋) ∈ ℝ)
31, 2mpan 678 . . . 4 (𝑋 ∈ ℝ → (1 − 𝑋) ∈ ℝ)
433ad2ant1 1114 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (1 − 𝑋) ∈ ℝ)
5 simp3 1119 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 𝑋 ≤ 1)
6 simp1 1117 . . . . 5 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 𝑋 ∈ ℝ)
7 subge0 10953 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1))
81, 6, 7sylancr 579 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1))
95, 8mpbird 249 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 0 ≤ (1 − 𝑋))
10 simp2 1118 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 0 ≤ 𝑋)
11 subge02 10956 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1))
121, 6, 11sylancr 579 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1))
1310, 12mpbid 224 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (1 − 𝑋) ≤ 1)
144, 9, 133jca 1109 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1))
15 elicc01 12669 . 2 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
16 elicc01 12669 . 2 ((1 − 𝑋) ∈ (0[,]1) ↔ ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1))
1714, 15, 163imtr4i 284 1 (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1069  wcel 2051   class class class wbr 4926  (class class class)co 6975  cr 10333  0cc0 10334  1c1 10335  cle 10474  cmin 10669  [,]cicc 12556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-po 5323  df-so 5324  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-icc 12560
This theorem is referenced by:  iirevcn  23253  icccvx  23273  phtpycom  23311  pcorev2  23351  pi1xfrcnv  23380  dvlipcn  24310  efcvx  24756  logccv  24963  leibpi  25238  cvxcl  25280  resconn  32111
  Copyright terms: Public domain W3C validator