MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iirev Structured version   Visualization version   GIF version

Theorem iirev 24850
Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iirev (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1))

Proof of Theorem iirev
StepHypRef Expression
1 1re 11112 . . . . 5 1 ∈ ℝ
2 resubcl 11425 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (1 − 𝑋) ∈ ℝ)
31, 2mpan 690 . . . 4 (𝑋 ∈ ℝ → (1 − 𝑋) ∈ ℝ)
433ad2ant1 1133 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (1 − 𝑋) ∈ ℝ)
5 simp3 1138 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 𝑋 ≤ 1)
6 simp1 1136 . . . . 5 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 𝑋 ∈ ℝ)
7 subge0 11630 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1))
81, 6, 7sylancr 587 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1))
95, 8mpbird 257 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 0 ≤ (1 − 𝑋))
10 simp2 1137 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 0 ≤ 𝑋)
11 subge02 11633 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1))
121, 6, 11sylancr 587 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1))
1310, 12mpbid 232 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (1 − 𝑋) ≤ 1)
144, 9, 133jca 1128 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1))
15 elicc01 13366 . 2 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
16 elicc01 13366 . 2 ((1 − 𝑋) ∈ (0[,]1) ↔ ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1))
1714, 15, 163imtr4i 292 1 (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2111   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007  cle 11147  cmin 11344  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-icc 13252
This theorem is referenced by:  iirevcn  24851  icccvx  24875  phtpycom  24914  pcorev2  24955  pi1xfrcnv  24984  dvlipcn  25926  efcvx  26386  logccv  26599  leibpi  26879  cvxcl  26922  resconn  35290
  Copyright terms: Public domain W3C validator