MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorev2 Structured version   Visualization version   GIF version

Theorem pcorev2 24180
Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcorev2.1 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pcorev2.2 𝑃 = ((0[,]1) × {(𝐹‘0)})
Assertion
Ref Expression
pcorev2 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)𝑃)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem pcorev2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pcorev2.1 . . . . 5 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
21pcorevcl 24177 . . . 4 (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0)))
32simp1d 1141 . . 3 (𝐹 ∈ (II Cn 𝐽) → 𝐺 ∈ (II Cn 𝐽))
4 eqid 2738 . . . 4 (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))
5 eqid 2738 . . . 4 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
64, 5pcorev 24179 . . 3 (𝐺 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
73, 6syl 17 . 2 (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
8 iirev 24081 . . . . . . 7 (𝑦 ∈ (0[,]1) → (1 − 𝑦) ∈ (0[,]1))
9 oveq2 7277 . . . . . . . . 9 (𝑥 = (1 − 𝑦) → (1 − 𝑥) = (1 − (1 − 𝑦)))
109fveq2d 6772 . . . . . . . 8 (𝑥 = (1 − 𝑦) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑦))))
11 fvex 6781 . . . . . . . 8 (𝐹‘(1 − (1 − 𝑦))) ∈ V
1210, 1, 11fvmpt 6869 . . . . . . 7 ((1 − 𝑦) ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦))))
138, 12syl 17 . . . . . 6 (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦))))
14 ax-1cn 10918 . . . . . . . 8 1 ∈ ℂ
15 unitssre 13220 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
1615sseli 3918 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℝ)
1716recnd 10992 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℂ)
18 nncan 11239 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦)
1914, 17, 18sylancr 587 . . . . . . 7 (𝑦 ∈ (0[,]1) → (1 − (1 − 𝑦)) = 𝑦)
2019fveq2d 6772 . . . . . 6 (𝑦 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑦))) = (𝐹𝑦))
2113, 20eqtrd 2778 . . . . 5 (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹𝑦))
2221mpteq2ia 5178 . . . 4 (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦))
23 iiuni 24033 . . . . . 6 (0[,]1) = II
24 eqid 2738 . . . . . 6 𝐽 = 𝐽
2523, 24cnf 22386 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
2625feqmptd 6831 . . . 4 (𝐹 ∈ (II Cn 𝐽) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
2722, 26eqtr4id 2797 . . 3 (𝐹 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = 𝐹)
2827oveq1d 7284 . 2 (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺) = (𝐹(*𝑝𝐽)𝐺))
292simp3d 1143 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → (𝐺‘1) = (𝐹‘0))
3029sneqd 4575 . . . 4 (𝐹 ∈ (II Cn 𝐽) → {(𝐺‘1)} = {(𝐹‘0)})
3130xpeq2d 5616 . . 3 (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐹‘0)}))
32 pcorev2.2 . . 3 𝑃 = ((0[,]1) × {(𝐹‘0)})
3331, 32eqtr4di 2796 . 2 (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = 𝑃)
347, 28, 333brtr3d 5106 1 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4563   cuni 4841   class class class wbr 5075  cmpt 5158   × cxp 5584  cfv 6428  (class class class)co 7269  cc 10858  cr 10859  0cc0 10860  1c1 10861  cmin 11194  [,]cicc 13071   Cn ccn 22364  IIcii 24027  phcphtpc 24121  *𝑝cpco 24152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938  ax-mulf 10940
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-se 5542  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-isom 6437  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-er 8487  df-map 8606  df-ixp 8675  df-en 8723  df-dom 8724  df-sdom 8725  df-fin 8726  df-fsupp 9118  df-fi 9159  df-sup 9190  df-inf 9191  df-oi 9258  df-card 9686  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-3 12026  df-4 12027  df-5 12028  df-6 12029  df-7 12030  df-8 12031  df-9 12032  df-n0 12223  df-z 12309  df-dec 12427  df-uz 12572  df-q 12678  df-rp 12720  df-xneg 12837  df-xadd 12838  df-xmul 12839  df-ioo 13072  df-icc 13075  df-fz 13229  df-fzo 13372  df-seq 13711  df-exp 13772  df-hash 14034  df-cj 14799  df-re 14800  df-im 14801  df-sqrt 14935  df-abs 14936  df-struct 16837  df-sets 16854  df-slot 16872  df-ndx 16884  df-base 16902  df-ress 16931  df-plusg 16964  df-mulr 16965  df-starv 16966  df-sca 16967  df-vsca 16968  df-ip 16969  df-tset 16970  df-ple 16971  df-ds 16973  df-unif 16974  df-hom 16975  df-cco 16976  df-rest 17122  df-topn 17123  df-0g 17141  df-gsum 17142  df-topgen 17143  df-pt 17144  df-prds 17147  df-xrs 17202  df-qtop 17207  df-imas 17208  df-xps 17210  df-mre 17284  df-mrc 17285  df-acs 17287  df-mgm 18315  df-sgrp 18364  df-mnd 18375  df-submnd 18420  df-mulg 18690  df-cntz 18912  df-cmn 19377  df-psmet 20578  df-xmet 20579  df-met 20580  df-bl 20581  df-mopn 20582  df-cnfld 20587  df-top 22032  df-topon 22049  df-topsp 22071  df-bases 22085  df-cld 22159  df-cn 22367  df-cnp 22368  df-tx 22702  df-hmeo 22895  df-xms 23462  df-ms 23463  df-tms 23464  df-ii 24029  df-htpy 24122  df-phtpy 24123  df-phtpc 24144  df-pco 24157
This theorem is referenced by:  pcophtb  24181  pi1xfr  24207  pi1xfrcnvlem  24208
  Copyright terms: Public domain W3C validator