![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcorev2 | Structured version Visualization version GIF version |
Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
Ref | Expression |
---|---|
pcorev2.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
pcorev2.2 | ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) |
Ref | Expression |
---|---|
pcorev2 | ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcorev2.1 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
2 | 1 | pcorevcl 24972 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0))) |
3 | 2 | simp1d 1139 | . . 3 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐺 ∈ (II Cn 𝐽)) |
4 | eqid 2728 | . . . 4 ⊢ (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) | |
5 | eqid 2728 | . . . 4 ⊢ ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)}) | |
6 | 4, 5 | pcorev 24974 | . . 3 ⊢ (𝐺 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)((0[,]1) × {(𝐺‘1)})) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)((0[,]1) × {(𝐺‘1)})) |
8 | iirev 24870 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → (1 − 𝑦) ∈ (0[,]1)) | |
9 | oveq2 7434 | . . . . . . . . 9 ⊢ (𝑥 = (1 − 𝑦) → (1 − 𝑥) = (1 − (1 − 𝑦))) | |
10 | 9 | fveq2d 6906 | . . . . . . . 8 ⊢ (𝑥 = (1 − 𝑦) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑦)))) |
11 | fvex 6915 | . . . . . . . 8 ⊢ (𝐹‘(1 − (1 − 𝑦))) ∈ V | |
12 | 10, 1, 11 | fvmpt 7010 | . . . . . . 7 ⊢ ((1 − 𝑦) ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦)))) |
13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦)))) |
14 | ax-1cn 11204 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
15 | unitssre 13516 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ ℝ | |
16 | 15 | sseli 3978 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℝ) |
17 | 16 | recnd 11280 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℂ) |
18 | nncan 11527 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦) | |
19 | 14, 17, 18 | sylancr 585 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → (1 − (1 − 𝑦)) = 𝑦) |
20 | 19 | fveq2d 6906 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑦))) = (𝐹‘𝑦)) |
21 | 13, 20 | eqtrd 2768 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘𝑦)) |
22 | 21 | mpteq2ia 5255 | . . . 4 ⊢ (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑦)) |
23 | iiuni 24821 | . . . . . 6 ⊢ (0[,]1) = ∪ II | |
24 | eqid 2728 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
25 | 23, 24 | cnf 23170 | . . . . 5 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶∪ 𝐽) |
26 | 25 | feqmptd 6972 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑦))) |
27 | 22, 26 | eqtr4id 2787 | . . 3 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = 𝐹) |
28 | 27 | oveq1d 7441 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝‘𝐽)𝐺) = (𝐹(*𝑝‘𝐽)𝐺)) |
29 | 2 | simp3d 1141 | . . . . 5 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺‘1) = (𝐹‘0)) |
30 | 29 | sneqd 4644 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → {(𝐺‘1)} = {(𝐹‘0)}) |
31 | 30 | xpeq2d 5712 | . . 3 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐹‘0)})) |
32 | pcorev2.2 | . . 3 ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) | |
33 | 31, 32 | eqtr4di 2786 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = 𝑃) |
34 | 7, 28, 33 | 3brtr3d 5183 | 1 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {csn 4632 ∪ cuni 4912 class class class wbr 5152 ↦ cmpt 5235 × cxp 5680 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 ℝcr 11145 0cc0 11146 1c1 11147 − cmin 11482 [,]cicc 13367 Cn ccn 23148 IIcii 24815 ≃phcphtpc 24915 *𝑝cpco 24947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-fi 9442 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-icc 13371 df-fz 13525 df-fzo 13668 df-seq 14007 df-exp 14067 df-hash 14330 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-hom 17264 df-cco 17265 df-rest 17411 df-topn 17412 df-0g 17430 df-gsum 17431 df-topgen 17432 df-pt 17433 df-prds 17436 df-xrs 17491 df-qtop 17496 df-imas 17497 df-xps 17499 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-mulg 19031 df-cntz 19275 df-cmn 19744 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-cld 22943 df-cn 23151 df-cnp 23152 df-tx 23486 df-hmeo 23679 df-xms 24246 df-ms 24247 df-tms 24248 df-ii 24817 df-htpy 24916 df-phtpy 24917 df-phtpc 24938 df-pco 24952 |
This theorem is referenced by: pcophtb 24976 pi1xfr 25002 pi1xfrcnvlem 25003 |
Copyright terms: Public domain | W3C validator |