MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorev2 Structured version   Visualization version   GIF version

Theorem pcorev2 25061
Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcorev2.1 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pcorev2.2 𝑃 = ((0[,]1) × {(𝐹‘0)})
Assertion
Ref Expression
pcorev2 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)𝑃)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem pcorev2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pcorev2.1 . . . . 5 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
21pcorevcl 25058 . . . 4 (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0)))
32simp1d 1143 . . 3 (𝐹 ∈ (II Cn 𝐽) → 𝐺 ∈ (II Cn 𝐽))
4 eqid 2737 . . . 4 (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))
5 eqid 2737 . . . 4 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
64, 5pcorev 25060 . . 3 (𝐺 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
73, 6syl 17 . 2 (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
8 iirev 24956 . . . . . . 7 (𝑦 ∈ (0[,]1) → (1 − 𝑦) ∈ (0[,]1))
9 oveq2 7439 . . . . . . . . 9 (𝑥 = (1 − 𝑦) → (1 − 𝑥) = (1 − (1 − 𝑦)))
109fveq2d 6910 . . . . . . . 8 (𝑥 = (1 − 𝑦) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑦))))
11 fvex 6919 . . . . . . . 8 (𝐹‘(1 − (1 − 𝑦))) ∈ V
1210, 1, 11fvmpt 7016 . . . . . . 7 ((1 − 𝑦) ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦))))
138, 12syl 17 . . . . . 6 (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦))))
14 ax-1cn 11213 . . . . . . . 8 1 ∈ ℂ
15 unitssre 13539 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
1615sseli 3979 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℝ)
1716recnd 11289 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℂ)
18 nncan 11538 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦)
1914, 17, 18sylancr 587 . . . . . . 7 (𝑦 ∈ (0[,]1) → (1 − (1 − 𝑦)) = 𝑦)
2019fveq2d 6910 . . . . . 6 (𝑦 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑦))) = (𝐹𝑦))
2113, 20eqtrd 2777 . . . . 5 (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹𝑦))
2221mpteq2ia 5245 . . . 4 (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦))
23 iiuni 24907 . . . . . 6 (0[,]1) = II
24 eqid 2737 . . . . . 6 𝐽 = 𝐽
2523, 24cnf 23254 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
2625feqmptd 6977 . . . 4 (𝐹 ∈ (II Cn 𝐽) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
2722, 26eqtr4id 2796 . . 3 (𝐹 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = 𝐹)
2827oveq1d 7446 . 2 (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺) = (𝐹(*𝑝𝐽)𝐺))
292simp3d 1145 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → (𝐺‘1) = (𝐹‘0))
3029sneqd 4638 . . . 4 (𝐹 ∈ (II Cn 𝐽) → {(𝐺‘1)} = {(𝐹‘0)})
3130xpeq2d 5715 . . 3 (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐹‘0)}))
32 pcorev2.2 . . 3 𝑃 = ((0[,]1) × {(𝐹‘0)})
3331, 32eqtr4di 2795 . 2 (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = 𝑃)
347, 28, 333brtr3d 5174 1 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4626   cuni 4907   class class class wbr 5143  cmpt 5225   × cxp 5683  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  cmin 11492  [,]cicc 13390   Cn ccn 23232  IIcii 24901  phcphtpc 25001  *𝑝cpco 25033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-htpy 25002  df-phtpy 25003  df-phtpc 25024  df-pco 25038
This theorem is referenced by:  pcophtb  25062  pi1xfr  25088  pi1xfrcnvlem  25089
  Copyright terms: Public domain W3C validator