| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcorev2 | Structured version Visualization version GIF version | ||
| Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| Ref | Expression |
|---|---|
| pcorev2.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
| pcorev2.2 | ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) |
| Ref | Expression |
|---|---|
| pcorev2 | ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcorev2.1 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) | |
| 2 | 1 | pcorevcl 24950 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0))) |
| 3 | 2 | simp1d 1142 | . . 3 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐺 ∈ (II Cn 𝐽)) |
| 4 | eqid 2731 | . . . 4 ⊢ (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) | |
| 5 | eqid 2731 | . . . 4 ⊢ ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)}) | |
| 6 | 4, 5 | pcorev 24952 | . . 3 ⊢ (𝐺 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)((0[,]1) × {(𝐺‘1)})) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)((0[,]1) × {(𝐺‘1)})) |
| 8 | iirev 24848 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → (1 − 𝑦) ∈ (0[,]1)) | |
| 9 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑥 = (1 − 𝑦) → (1 − 𝑥) = (1 − (1 − 𝑦))) | |
| 10 | 9 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑥 = (1 − 𝑦) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑦)))) |
| 11 | fvex 6835 | . . . . . . . 8 ⊢ (𝐹‘(1 − (1 − 𝑦))) ∈ V | |
| 12 | 10, 1, 11 | fvmpt 6929 | . . . . . . 7 ⊢ ((1 − 𝑦) ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦)))) |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦)))) |
| 14 | ax-1cn 11061 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 15 | unitssre 13396 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ ℝ | |
| 16 | 15 | sseli 3930 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℝ) |
| 17 | 16 | recnd 11137 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℂ) |
| 18 | nncan 11387 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦) | |
| 19 | 14, 17, 18 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → (1 − (1 − 𝑦)) = 𝑦) |
| 20 | 19 | fveq2d 6826 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑦))) = (𝐹‘𝑦)) |
| 21 | 13, 20 | eqtrd 2766 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘𝑦)) |
| 22 | 21 | mpteq2ia 5186 | . . . 4 ⊢ (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑦)) |
| 23 | iiuni 24799 | . . . . . 6 ⊢ (0[,]1) = ∪ II | |
| 24 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 25 | 23, 24 | cnf 23159 | . . . . 5 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶∪ 𝐽) |
| 26 | 25 | feqmptd 6890 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑦))) |
| 27 | 22, 26 | eqtr4id 2785 | . . 3 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = 𝐹) |
| 28 | 27 | oveq1d 7361 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝‘𝐽)𝐺) = (𝐹(*𝑝‘𝐽)𝐺)) |
| 29 | 2 | simp3d 1144 | . . . . 5 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺‘1) = (𝐹‘0)) |
| 30 | 29 | sneqd 4588 | . . . 4 ⊢ (𝐹 ∈ (II Cn 𝐽) → {(𝐺‘1)} = {(𝐹‘0)}) |
| 31 | 30 | xpeq2d 5646 | . . 3 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐹‘0)})) |
| 32 | pcorev2.2 | . . 3 ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) | |
| 33 | 31, 32 | eqtr4di 2784 | . 2 ⊢ (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = 𝑃) |
| 34 | 7, 28, 33 | 3brtr3d 5122 | 1 ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4576 ∪ cuni 4859 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 − cmin 11341 [,]cicc 13245 Cn ccn 23137 IIcii 24793 ≃phcphtpc 24893 *𝑝cpco 24925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-icc 13249 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-cn 23140 df-cnp 23141 df-tx 23475 df-hmeo 23668 df-xms 24233 df-ms 24234 df-tms 24235 df-ii 24795 df-htpy 24894 df-phtpy 24895 df-phtpc 24916 df-pco 24930 |
| This theorem is referenced by: pcophtb 24954 pi1xfr 24980 pi1xfrcnvlem 24981 |
| Copyright terms: Public domain | W3C validator |