MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorev2 Structured version   Visualization version   GIF version

Theorem pcorev2 24097
Description: Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pcorev2.1 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pcorev2.2 𝑃 = ((0[,]1) × {(𝐹‘0)})
Assertion
Ref Expression
pcorev2 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)𝑃)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem pcorev2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pcorev2.1 . . . . 5 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
21pcorevcl 24094 . . . 4 (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0)))
32simp1d 1140 . . 3 (𝐹 ∈ (II Cn 𝐽) → 𝐺 ∈ (II Cn 𝐽))
4 eqid 2738 . . . 4 (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))
5 eqid 2738 . . . 4 ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐺‘1)})
64, 5pcorev 24096 . . 3 (𝐺 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
73, 6syl 17 . 2 (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺)( ≃ph𝐽)((0[,]1) × {(𝐺‘1)}))
8 iirev 23998 . . . . . . 7 (𝑦 ∈ (0[,]1) → (1 − 𝑦) ∈ (0[,]1))
9 oveq2 7263 . . . . . . . . 9 (𝑥 = (1 − 𝑦) → (1 − 𝑥) = (1 − (1 − 𝑦)))
109fveq2d 6760 . . . . . . . 8 (𝑥 = (1 − 𝑦) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑦))))
11 fvex 6769 . . . . . . . 8 (𝐹‘(1 − (1 − 𝑦))) ∈ V
1210, 1, 11fvmpt 6857 . . . . . . 7 ((1 − 𝑦) ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦))))
138, 12syl 17 . . . . . 6 (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹‘(1 − (1 − 𝑦))))
14 ax-1cn 10860 . . . . . . . 8 1 ∈ ℂ
15 unitssre 13160 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
1615sseli 3913 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℝ)
1716recnd 10934 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦 ∈ ℂ)
18 nncan 11180 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 − (1 − 𝑦)) = 𝑦)
1914, 17, 18sylancr 586 . . . . . . 7 (𝑦 ∈ (0[,]1) → (1 − (1 − 𝑦)) = 𝑦)
2019fveq2d 6760 . . . . . 6 (𝑦 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑦))) = (𝐹𝑦))
2113, 20eqtrd 2778 . . . . 5 (𝑦 ∈ (0[,]1) → (𝐺‘(1 − 𝑦)) = (𝐹𝑦))
2221mpteq2ia 5173 . . . 4 (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦))
23 iiuni 23950 . . . . . 6 (0[,]1) = II
24 eqid 2738 . . . . . 6 𝐽 = 𝐽
2523, 24cnf 22305 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
2625feqmptd 6819 . . . 4 (𝐹 ∈ (II Cn 𝐽) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
2722, 26eqtr4id 2798 . . 3 (𝐹 ∈ (II Cn 𝐽) → (𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦))) = 𝐹)
2827oveq1d 7270 . 2 (𝐹 ∈ (II Cn 𝐽) → ((𝑦 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑦)))(*𝑝𝐽)𝐺) = (𝐹(*𝑝𝐽)𝐺))
292simp3d 1142 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → (𝐺‘1) = (𝐹‘0))
3029sneqd 4570 . . . 4 (𝐹 ∈ (II Cn 𝐽) → {(𝐺‘1)} = {(𝐹‘0)})
3130xpeq2d 5610 . . 3 (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = ((0[,]1) × {(𝐹‘0)}))
32 pcorev2.2 . . 3 𝑃 = ((0[,]1) × {(𝐹‘0)})
3331, 32eqtr4di 2797 . 2 (𝐹 ∈ (II Cn 𝐽) → ((0[,]1) × {(𝐺‘1)}) = 𝑃)
347, 28, 333brtr3d 5101 1 (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)𝐺)( ≃ph𝐽)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  cmin 11135  [,]cicc 13011   Cn ccn 22283  IIcii 23944  phcphtpc 24038  *𝑝cpco 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-ii 23946  df-htpy 24039  df-phtpy 24040  df-phtpc 24061  df-pco 24074
This theorem is referenced by:  pcophtb  24098  pi1xfr  24124  pi1xfrcnvlem  24125
  Copyright terms: Public domain W3C validator