Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupbnd1f Structured version   Visualization version   GIF version

Theorem limsupbnd1f 45808
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupbnd1f.1 𝑗𝐹
limsupbnd1f.2 (𝜑𝐵 ⊆ ℝ)
limsupbnd1f.3 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd1f.4 (𝜑𝐴 ∈ ℝ*)
limsupbnd1f.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1f (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupbnd1f
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd1f.2 . 2 (𝜑𝐵 ⊆ ℝ)
2 limsupbnd1f.3 . 2 (𝜑𝐹:𝐵⟶ℝ*)
3 limsupbnd1f.4 . 2 (𝜑𝐴 ∈ ℝ*)
4 limsupbnd1f.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
5 breq1 5096 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
65imbi1d 341 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
76ralbidv 3156 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
8 nfv 1915 . . . . . . 7 𝑙(𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)
9 nfv 1915 . . . . . . . 8 𝑗 𝑖𝑙
10 limsupbnd1f.1 . . . . . . . . . 10 𝑗𝐹
11 nfcv 2895 . . . . . . . . . 10 𝑗𝑙
1210, 11nffv 6838 . . . . . . . . 9 𝑗(𝐹𝑙)
13 nfcv 2895 . . . . . . . . 9 𝑗
14 nfcv 2895 . . . . . . . . 9 𝑗𝐴
1512, 13, 14nfbr 5140 . . . . . . . 8 𝑗(𝐹𝑙) ≤ 𝐴
169, 15nfim 1897 . . . . . . 7 𝑗(𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)
17 breq2 5097 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
18 fveq2 6828 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1918breq1d 5103 . . . . . . . 8 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝐴 ↔ (𝐹𝑙) ≤ 𝐴))
2017, 19imbi12d 344 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
218, 16, 20cbvralw 3275 . . . . . 6 (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
2221a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
237, 22bitrd 279 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
2423cbvrexvw 3212 . . 3 (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
254, 24sylib 218 . 2 (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
261, 2, 3, 25limsupbnd1 15391 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wnfc 2880  wral 3048  wrex 3057  wss 3898   class class class wbr 5093  wf 6482  cfv 6486  cr 11012  *cxr 11152  cle 11154  lim supclsp 15379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-ico 13253  df-limsup 15380
This theorem is referenced by:  limsuppnflem  45832
  Copyright terms: Public domain W3C validator