Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupbnd1f | Structured version Visualization version GIF version |
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupbnd1f.1 | ⊢ Ⅎ𝑗𝐹 |
limsupbnd1f.2 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
limsupbnd1f.3 | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
limsupbnd1f.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
limsupbnd1f.5 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) |
Ref | Expression |
---|---|
limsupbnd1f | ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupbnd1f.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
2 | limsupbnd1f.3 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
3 | limsupbnd1f.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | limsupbnd1f.5 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) | |
5 | breq1 5081 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
6 | 5 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
7 | 6 | ralbidv 3122 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
8 | nfv 1920 | . . . . . . 7 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) | |
9 | nfv 1920 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
10 | limsupbnd1f.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝐹 | |
11 | nfcv 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝑙 | |
12 | 10, 11 | nffv 6778 | . . . . . . . . 9 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
13 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
14 | nfcv 2908 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝐴 | |
15 | 12, 13, 14 | nfbr 5125 | . . . . . . . 8 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝐴 |
16 | 9, 15 | nfim 1902 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴) |
17 | breq2 5082 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
18 | fveq2 6768 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
19 | 18 | breq1d 5088 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → ((𝐹‘𝑗) ≤ 𝐴 ↔ (𝐹‘𝑙) ≤ 𝐴)) |
20 | 17, 19 | imbi12d 344 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
21 | 8, 16, 20 | cbvralw 3371 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
23 | 7, 22 | bitrd 278 | . . . 4 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
24 | 23 | cbvrexvw 3381 | . . 3 ⊢ (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
25 | 4, 24 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
26 | 1, 2, 3, 25 | limsupbnd1 15172 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 Ⅎwnfc 2888 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 class class class wbr 5078 ⟶wf 6426 ‘cfv 6430 ℝcr 10854 ℝ*cxr 10992 ≤ cle 10994 lim supclsp 15160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-ico 13067 df-limsup 15161 |
This theorem is referenced by: limsuppnflem 43205 |
Copyright terms: Public domain | W3C validator |