Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupbnd1f Structured version   Visualization version   GIF version

Theorem limsupbnd1f 42856
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupbnd1f.1 𝑗𝐹
limsupbnd1f.2 (𝜑𝐵 ⊆ ℝ)
limsupbnd1f.3 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd1f.4 (𝜑𝐴 ∈ ℝ*)
limsupbnd1f.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1f (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupbnd1f
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd1f.2 . 2 (𝜑𝐵 ⊆ ℝ)
2 limsupbnd1f.3 . 2 (𝜑𝐹:𝐵⟶ℝ*)
3 limsupbnd1f.4 . 2 (𝜑𝐴 ∈ ℝ*)
4 limsupbnd1f.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
5 breq1 5046 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
65imbi1d 345 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
76ralbidv 3111 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
8 nfv 1922 . . . . . . 7 𝑙(𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)
9 nfv 1922 . . . . . . . 8 𝑗 𝑖𝑙
10 limsupbnd1f.1 . . . . . . . . . 10 𝑗𝐹
11 nfcv 2900 . . . . . . . . . 10 𝑗𝑙
1210, 11nffv 6716 . . . . . . . . 9 𝑗(𝐹𝑙)
13 nfcv 2900 . . . . . . . . 9 𝑗
14 nfcv 2900 . . . . . . . . 9 𝑗𝐴
1512, 13, 14nfbr 5090 . . . . . . . 8 𝑗(𝐹𝑙) ≤ 𝐴
169, 15nfim 1904 . . . . . . 7 𝑗(𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)
17 breq2 5047 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
18 fveq2 6706 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1918breq1d 5053 . . . . . . . 8 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝐴 ↔ (𝐹𝑙) ≤ 𝐴))
2017, 19imbi12d 348 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
218, 16, 20cbvralw 3342 . . . . . 6 (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
2221a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
237, 22bitrd 282 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
2423cbvrexvw 3352 . . 3 (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
254, 24sylib 221 . 2 (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
261, 2, 3, 25limsupbnd1 15026 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  wnfc 2880  wral 3054  wrex 3055  wss 3857   class class class wbr 5043  wf 6365  cfv 6369  cr 10711  *cxr 10849  cle 10851  lim supclsp 15014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-po 5457  df-so 5458  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-ico 12924  df-limsup 15015
This theorem is referenced by:  limsuppnflem  42880
  Copyright terms: Public domain W3C validator