![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupbnd1f | Structured version Visualization version GIF version |
Description: If a sequence is eventually at most π΄, then the limsup is also at most π΄. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupbnd1f.1 | β’ β²ππΉ |
limsupbnd1f.2 | β’ (π β π΅ β β) |
limsupbnd1f.3 | β’ (π β πΉ:π΅βΆβ*) |
limsupbnd1f.4 | β’ (π β π΄ β β*) |
limsupbnd1f.5 | β’ (π β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
Ref | Expression |
---|---|
limsupbnd1f | β’ (π β (lim supβπΉ) β€ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupbnd1f.2 | . 2 β’ (π β π΅ β β) | |
2 | limsupbnd1f.3 | . 2 β’ (π β πΉ:π΅βΆβ*) | |
3 | limsupbnd1f.4 | . 2 β’ (π β π΄ β β*) | |
4 | limsupbnd1f.5 | . . 3 β’ (π β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) | |
5 | breq1 5146 | . . . . . . 7 β’ (π = π β (π β€ π β π β€ π)) | |
6 | 5 | imbi1d 340 | . . . . . 6 β’ (π = π β ((π β€ π β (πΉβπ) β€ π΄) β (π β€ π β (πΉβπ) β€ π΄))) |
7 | 6 | ralbidv 3168 | . . . . 5 β’ (π = π β (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄))) |
8 | nfv 1909 | . . . . . . 7 β’ β²π(π β€ π β (πΉβπ) β€ π΄) | |
9 | nfv 1909 | . . . . . . . 8 β’ β²π π β€ π | |
10 | limsupbnd1f.1 | . . . . . . . . . 10 β’ β²ππΉ | |
11 | nfcv 2892 | . . . . . . . . . 10 β’ β²ππ | |
12 | 10, 11 | nffv 6901 | . . . . . . . . 9 β’ β²π(πΉβπ) |
13 | nfcv 2892 | . . . . . . . . 9 β’ β²π β€ | |
14 | nfcv 2892 | . . . . . . . . 9 β’ β²ππ΄ | |
15 | 12, 13, 14 | nfbr 5190 | . . . . . . . 8 β’ β²π(πΉβπ) β€ π΄ |
16 | 9, 15 | nfim 1891 | . . . . . . 7 β’ β²π(π β€ π β (πΉβπ) β€ π΄) |
17 | breq2 5147 | . . . . . . . 8 β’ (π = π β (π β€ π β π β€ π)) | |
18 | fveq2 6891 | . . . . . . . . 9 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
19 | 18 | breq1d 5153 | . . . . . . . 8 β’ (π = π β ((πΉβπ) β€ π΄ β (πΉβπ) β€ π΄)) |
20 | 17, 19 | imbi12d 343 | . . . . . . 7 β’ (π = π β ((π β€ π β (πΉβπ) β€ π΄) β (π β€ π β (πΉβπ) β€ π΄))) |
21 | 8, 16, 20 | cbvralw 3294 | . . . . . 6 β’ (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
22 | 21 | a1i 11 | . . . . 5 β’ (π = π β (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄))) |
23 | 7, 22 | bitrd 278 | . . . 4 β’ (π = π β (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄))) |
24 | 23 | cbvrexvw 3226 | . . 3 β’ (βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
25 | 4, 24 | sylib 217 | . 2 β’ (π β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
26 | 1, 2, 3, 25 | limsupbnd1 15456 | 1 β’ (π β (lim supβπΉ) β€ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 β²wnfc 2875 βwral 3051 βwrex 3060 β wss 3940 class class class wbr 5143 βΆwf 6538 βcfv 6542 βcr 11135 β*cxr 11275 β€ cle 11277 lim supclsp 15444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-ico 13360 df-limsup 15445 |
This theorem is referenced by: limsuppnflem 45160 |
Copyright terms: Public domain | W3C validator |