![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupbnd1f | Structured version Visualization version GIF version |
Description: If a sequence is eventually at most π΄, then the limsup is also at most π΄. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupbnd1f.1 | β’ β²ππΉ |
limsupbnd1f.2 | β’ (π β π΅ β β) |
limsupbnd1f.3 | β’ (π β πΉ:π΅βΆβ*) |
limsupbnd1f.4 | β’ (π β π΄ β β*) |
limsupbnd1f.5 | β’ (π β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
Ref | Expression |
---|---|
limsupbnd1f | β’ (π β (lim supβπΉ) β€ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupbnd1f.2 | . 2 β’ (π β π΅ β β) | |
2 | limsupbnd1f.3 | . 2 β’ (π β πΉ:π΅βΆβ*) | |
3 | limsupbnd1f.4 | . 2 β’ (π β π΄ β β*) | |
4 | limsupbnd1f.5 | . . 3 β’ (π β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) | |
5 | breq1 5152 | . . . . . . 7 β’ (π = π β (π β€ π β π β€ π)) | |
6 | 5 | imbi1d 342 | . . . . . 6 β’ (π = π β ((π β€ π β (πΉβπ) β€ π΄) β (π β€ π β (πΉβπ) β€ π΄))) |
7 | 6 | ralbidv 3178 | . . . . 5 β’ (π = π β (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄))) |
8 | nfv 1918 | . . . . . . 7 β’ β²π(π β€ π β (πΉβπ) β€ π΄) | |
9 | nfv 1918 | . . . . . . . 8 β’ β²π π β€ π | |
10 | limsupbnd1f.1 | . . . . . . . . . 10 β’ β²ππΉ | |
11 | nfcv 2904 | . . . . . . . . . 10 β’ β²ππ | |
12 | 10, 11 | nffv 6902 | . . . . . . . . 9 β’ β²π(πΉβπ) |
13 | nfcv 2904 | . . . . . . . . 9 β’ β²π β€ | |
14 | nfcv 2904 | . . . . . . . . 9 β’ β²ππ΄ | |
15 | 12, 13, 14 | nfbr 5196 | . . . . . . . 8 β’ β²π(πΉβπ) β€ π΄ |
16 | 9, 15 | nfim 1900 | . . . . . . 7 β’ β²π(π β€ π β (πΉβπ) β€ π΄) |
17 | breq2 5153 | . . . . . . . 8 β’ (π = π β (π β€ π β π β€ π)) | |
18 | fveq2 6892 | . . . . . . . . 9 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
19 | 18 | breq1d 5159 | . . . . . . . 8 β’ (π = π β ((πΉβπ) β€ π΄ β (πΉβπ) β€ π΄)) |
20 | 17, 19 | imbi12d 345 | . . . . . . 7 β’ (π = π β ((π β€ π β (πΉβπ) β€ π΄) β (π β€ π β (πΉβπ) β€ π΄))) |
21 | 8, 16, 20 | cbvralw 3304 | . . . . . 6 β’ (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
22 | 21 | a1i 11 | . . . . 5 β’ (π = π β (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄))) |
23 | 7, 22 | bitrd 279 | . . . 4 β’ (π = π β (βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄))) |
24 | 23 | cbvrexvw 3236 | . . 3 β’ (βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄) β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
25 | 4, 24 | sylib 217 | . 2 β’ (π β βπ β β βπ β π΅ (π β€ π β (πΉβπ) β€ π΄)) |
26 | 1, 2, 3, 25 | limsupbnd1 15426 | 1 β’ (π β (lim supβπΉ) β€ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 β²wnfc 2884 βwral 3062 βwrex 3071 β wss 3949 class class class wbr 5149 βΆwf 6540 βcfv 6544 βcr 11109 β*cxr 11247 β€ cle 11249 lim supclsp 15414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-ico 13330 df-limsup 15415 |
This theorem is referenced by: limsuppnflem 44426 |
Copyright terms: Public domain | W3C validator |