Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupbnd1f Structured version   Visualization version   GIF version

Theorem limsupbnd1f 43181
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupbnd1f.1 𝑗𝐹
limsupbnd1f.2 (𝜑𝐵 ⊆ ℝ)
limsupbnd1f.3 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd1f.4 (𝜑𝐴 ∈ ℝ*)
limsupbnd1f.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1f (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupbnd1f
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd1f.2 . 2 (𝜑𝐵 ⊆ ℝ)
2 limsupbnd1f.3 . 2 (𝜑𝐹:𝐵⟶ℝ*)
3 limsupbnd1f.4 . 2 (𝜑𝐴 ∈ ℝ*)
4 limsupbnd1f.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
5 breq1 5081 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
65imbi1d 341 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
76ralbidv 3122 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
8 nfv 1920 . . . . . . 7 𝑙(𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)
9 nfv 1920 . . . . . . . 8 𝑗 𝑖𝑙
10 limsupbnd1f.1 . . . . . . . . . 10 𝑗𝐹
11 nfcv 2908 . . . . . . . . . 10 𝑗𝑙
1210, 11nffv 6778 . . . . . . . . 9 𝑗(𝐹𝑙)
13 nfcv 2908 . . . . . . . . 9 𝑗
14 nfcv 2908 . . . . . . . . 9 𝑗𝐴
1512, 13, 14nfbr 5125 . . . . . . . 8 𝑗(𝐹𝑙) ≤ 𝐴
169, 15nfim 1902 . . . . . . 7 𝑗(𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)
17 breq2 5082 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
18 fveq2 6768 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1918breq1d 5088 . . . . . . . 8 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝐴 ↔ (𝐹𝑙) ≤ 𝐴))
2017, 19imbi12d 344 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
218, 16, 20cbvralw 3371 . . . . . 6 (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
2221a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
237, 22bitrd 278 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
2423cbvrexvw 3381 . . 3 (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
254, 24sylib 217 . 2 (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
261, 2, 3, 25limsupbnd1 15172 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2109  wnfc 2888  wral 3065  wrex 3066  wss 3891   class class class wbr 5078  wf 6426  cfv 6430  cr 10854  *cxr 10992  cle 10994  lim supclsp 15160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-ico 13067  df-limsup 15161
This theorem is referenced by:  limsuppnflem  43205
  Copyright terms: Public domain W3C validator