Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupbnd1f Structured version   Visualization version   GIF version

Theorem limsupbnd1f 45657
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupbnd1f.1 𝑗𝐹
limsupbnd1f.2 (𝜑𝐵 ⊆ ℝ)
limsupbnd1f.3 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd1f.4 (𝜑𝐴 ∈ ℝ*)
limsupbnd1f.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1f (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupbnd1f
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd1f.2 . 2 (𝜑𝐵 ⊆ ℝ)
2 limsupbnd1f.3 . 2 (𝜑𝐹:𝐵⟶ℝ*)
3 limsupbnd1f.4 . 2 (𝜑𝐴 ∈ ℝ*)
4 limsupbnd1f.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
5 breq1 5118 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
65imbi1d 341 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
76ralbidv 3158 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
8 nfv 1914 . . . . . . 7 𝑙(𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)
9 nfv 1914 . . . . . . . 8 𝑗 𝑖𝑙
10 limsupbnd1f.1 . . . . . . . . . 10 𝑗𝐹
11 nfcv 2893 . . . . . . . . . 10 𝑗𝑙
1210, 11nffv 6875 . . . . . . . . 9 𝑗(𝐹𝑙)
13 nfcv 2893 . . . . . . . . 9 𝑗
14 nfcv 2893 . . . . . . . . 9 𝑗𝐴
1512, 13, 14nfbr 5162 . . . . . . . 8 𝑗(𝐹𝑙) ≤ 𝐴
169, 15nfim 1896 . . . . . . 7 𝑗(𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)
17 breq2 5119 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
18 fveq2 6865 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1918breq1d 5125 . . . . . . . 8 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝐴 ↔ (𝐹𝑙) ≤ 𝐴))
2017, 19imbi12d 344 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
218, 16, 20cbvralw 3283 . . . . . 6 (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
2221a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
237, 22bitrd 279 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
2423cbvrexvw 3218 . . 3 (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
254, 24sylib 218 . 2 (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
261, 2, 3, 25limsupbnd1 15455 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wnfc 2878  wral 3046  wrex 3055  wss 3922   class class class wbr 5115  wf 6515  cfv 6519  cr 11085  *cxr 11225  cle 11227  lim supclsp 15443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9411  df-inf 9412  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-ico 13325  df-limsup 15444
This theorem is referenced by:  limsuppnflem  45681
  Copyright terms: Public domain W3C validator