![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupbnd1f | Structured version Visualization version GIF version |
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupbnd1f.1 | ⊢ Ⅎ𝑗𝐹 |
limsupbnd1f.2 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
limsupbnd1f.3 | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
limsupbnd1f.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
limsupbnd1f.5 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) |
Ref | Expression |
---|---|
limsupbnd1f | ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupbnd1f.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
2 | limsupbnd1f.3 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
3 | limsupbnd1f.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | limsupbnd1f.5 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) | |
5 | breq1 5172 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
6 | 5 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
7 | 6 | ralbidv 3180 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
8 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) | |
9 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
10 | limsupbnd1f.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝐹 | |
11 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝑙 | |
12 | 10, 11 | nffv 6929 | . . . . . . . . 9 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
13 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
14 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝐴 | |
15 | 12, 13, 14 | nfbr 5216 | . . . . . . . 8 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝐴 |
16 | 9, 15 | nfim 1895 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴) |
17 | breq2 5173 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
18 | fveq2 6919 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
19 | 18 | breq1d 5179 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → ((𝐹‘𝑗) ≤ 𝐴 ↔ (𝐹‘𝑙) ≤ 𝐴)) |
20 | 17, 19 | imbi12d 344 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
21 | 8, 16, 20 | cbvralw 3307 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
23 | 7, 22 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
24 | 23 | cbvrexvw 3239 | . . 3 ⊢ (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
25 | 4, 24 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
26 | 1, 2, 3, 25 | limsupbnd1 15524 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2103 Ⅎwnfc 2888 ∀wral 3063 ∃wrex 3072 ⊆ wss 3970 class class class wbr 5169 ⟶wf 6568 ‘cfv 6572 ℝcr 11179 ℝ*cxr 11319 ≤ cle 11321 lim supclsp 15512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-po 5611 df-so 5612 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-sup 9507 df-inf 9508 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-ico 13409 df-limsup 15513 |
This theorem is referenced by: limsuppnflem 45566 |
Copyright terms: Public domain | W3C validator |