Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupbnd1f Structured version   Visualization version   GIF version

Theorem limsupbnd1f 41509
Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupbnd1f.1 𝑗𝐹
limsupbnd1f.2 (𝜑𝐵 ⊆ ℝ)
limsupbnd1f.3 (𝜑𝐹:𝐵⟶ℝ*)
limsupbnd1f.4 (𝜑𝐴 ∈ ℝ*)
limsupbnd1f.5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
Assertion
Ref Expression
limsupbnd1f (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝑘,𝐹
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗)

Proof of Theorem limsupbnd1f
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupbnd1f.2 . 2 (𝜑𝐵 ⊆ ℝ)
2 limsupbnd1f.3 . 2 (𝜑𝐹:𝐵⟶ℝ*)
3 limsupbnd1f.4 . 2 (𝜑𝐴 ∈ ℝ*)
4 limsupbnd1f.5 . . 3 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴))
5 breq1 4965 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
65imbi1d 343 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
76ralbidv 3164 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)))
8 nfv 1892 . . . . . . 7 𝑙(𝑖𝑗 → (𝐹𝑗) ≤ 𝐴)
9 nfv 1892 . . . . . . . 8 𝑗 𝑖𝑙
10 limsupbnd1f.1 . . . . . . . . . 10 𝑗𝐹
11 nfcv 2949 . . . . . . . . . 10 𝑗𝑙
1210, 11nffv 6548 . . . . . . . . 9 𝑗(𝐹𝑙)
13 nfcv 2949 . . . . . . . . 9 𝑗
14 nfcv 2949 . . . . . . . . 9 𝑗𝐴
1512, 13, 14nfbr 5009 . . . . . . . 8 𝑗(𝐹𝑙) ≤ 𝐴
169, 15nfim 1878 . . . . . . 7 𝑗(𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)
17 breq2 4966 . . . . . . . 8 (𝑗 = 𝑙 → (𝑖𝑗𝑖𝑙))
18 fveq2 6538 . . . . . . . . 9 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
1918breq1d 4972 . . . . . . . 8 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝐴 ↔ (𝐹𝑙) ≤ 𝐴))
2017, 19imbi12d 346 . . . . . . 7 (𝑗 = 𝑙 → ((𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
218, 16, 20cbvral 3399 . . . . . 6 (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
2221a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑖𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
237, 22bitrd 280 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴)))
2423cbvrexv 3404 . . 3 (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
254, 24sylib 219 . 2 (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙𝐵 (𝑖𝑙 → (𝐹𝑙) ≤ 𝐴))
261, 2, 3, 25limsupbnd1 14673 1 (𝜑 → (lim sup‘𝐹) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1522  wcel 2081  wnfc 2933  wral 3105  wrex 3106  wss 3859   class class class wbr 4962  wf 6221  cfv 6225  cr 10382  *cxr 10520  cle 10522  lim supclsp 14661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-ico 12594  df-limsup 14662
This theorem is referenced by:  limsuppnflem  41533
  Copyright terms: Public domain W3C validator