| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupbnd1f | Structured version Visualization version GIF version | ||
| Description: If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupbnd1f.1 | ⊢ Ⅎ𝑗𝐹 |
| limsupbnd1f.2 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| limsupbnd1f.3 | ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
| limsupbnd1f.4 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| limsupbnd1f.5 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) |
| Ref | Expression |
|---|---|
| limsupbnd1f | ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupbnd1f.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 2 | limsupbnd1f.3 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) | |
| 3 | limsupbnd1f.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | limsupbnd1f.5 | . . 3 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) | |
| 5 | breq1 5118 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
| 6 | 5 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
| 7 | 6 | ralbidv 3158 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
| 8 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑙(𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) | |
| 9 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑙 | |
| 10 | limsupbnd1f.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝐹 | |
| 11 | nfcv 2893 | . . . . . . . . . 10 ⊢ Ⅎ𝑗𝑙 | |
| 12 | 10, 11 | nffv 6875 | . . . . . . . . 9 ⊢ Ⅎ𝑗(𝐹‘𝑙) |
| 13 | nfcv 2893 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
| 14 | nfcv 2893 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝐴 | |
| 15 | 12, 13, 14 | nfbr 5162 | . . . . . . . 8 ⊢ Ⅎ𝑗(𝐹‘𝑙) ≤ 𝐴 |
| 16 | 9, 15 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴) |
| 17 | breq2 5119 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑙)) | |
| 18 | fveq2 6865 | . . . . . . . . 9 ⊢ (𝑗 = 𝑙 → (𝐹‘𝑗) = (𝐹‘𝑙)) | |
| 19 | 18 | breq1d 5125 | . . . . . . . 8 ⊢ (𝑗 = 𝑙 → ((𝐹‘𝑗) ≤ 𝐴 ↔ (𝐹‘𝑙) ≤ 𝐴)) |
| 20 | 17, 19 | imbi12d 344 | . . . . . . 7 ⊢ (𝑗 = 𝑙 → ((𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
| 21 | 8, 16, 20 | cbvralw 3283 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑖 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
| 23 | 7, 22 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴))) |
| 24 | 23 | cbvrexvw 3218 | . . 3 ⊢ (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴) ↔ ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
| 25 | 4, 24 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ ℝ ∀𝑙 ∈ 𝐵 (𝑖 ≤ 𝑙 → (𝐹‘𝑙) ≤ 𝐴)) |
| 26 | 1, 2, 3, 25 | limsupbnd1 15455 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2878 ∀wral 3046 ∃wrex 3055 ⊆ wss 3922 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 ℝcr 11085 ℝ*cxr 11225 ≤ cle 11227 lim supclsp 15443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-po 5554 df-so 5555 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-ico 13325 df-limsup 15444 |
| This theorem is referenced by: limsuppnflem 45681 |
| Copyright terms: Public domain | W3C validator |