| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem6N | Structured version Visualization version GIF version | ||
| Description: Part of proof of part 12 in [Baer] p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
| hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
| hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
| hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
| hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
| hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
| hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
| hdmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
| hdmaprnlem1.p | ⊢ + = (+g‘𝑈) |
| hdmaprnlem1.pt | ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) |
| Ref | Expression |
|---|---|
| hdmaprnlem6N | ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝐿‘{((𝑆‘𝑢) ✚ (𝑆‘𝑡))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmaprnlem1.pt | . 2 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) | |
| 2 | hdmaprnlem1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | hdmaprnlem1.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | hdmaprnlem1.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | hdmaprnlem1.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 6 | hdmaprnlem1.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 7 | hdmaprnlem1.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 8 | hdmaprnlem1.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 9 | hdmaprnlem1.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 10 | hdmaprnlem1.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 2, 3, 10 | dvhlmod 41071 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | hdmaprnlem1.ue | . . . 4 ⊢ (𝜑 → 𝑢 ∈ 𝑉) | |
| 13 | hdmaprnlem1.se | . . . . 5 ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) | |
| 14 | hdmaprnlem1.ve | . . . . 5 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
| 15 | hdmaprnlem1.e | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
| 16 | hdmaprnlem1.un | . . . . 5 ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) | |
| 17 | hdmaprnlem1.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
| 18 | hdmaprnlem1.q | . . . . 5 ⊢ 𝑄 = (0g‘𝐶) | |
| 19 | hdmaprnlem1.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 20 | hdmaprnlem1.a | . . . . 5 ⊢ ✚ = (+g‘𝐶) | |
| 21 | hdmaprnlem1.t2 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) | |
| 22 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 12, 16, 17, 18, 19, 20, 21 | hdmaprnlem4tN 41813 | . . . 4 ⊢ (𝜑 → 𝑡 ∈ 𝑉) |
| 23 | hdmaprnlem1.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 24 | 4, 23 | lmodvacl 20841 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ 𝑡 ∈ 𝑉) → (𝑢 + 𝑡) ∈ 𝑉) |
| 25 | 11, 12, 22, 24 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑢 + 𝑡) ∈ 𝑉) |
| 26 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 | hdmap10 41801 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑢 + 𝑡)})) = (𝐿‘{(𝑆‘(𝑢 + 𝑡))})) |
| 27 | 2, 3, 4, 23, 6, 20, 9, 10, 12, 22 | hdmapadd 41804 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝑢 + 𝑡)) = ((𝑆‘𝑢) ✚ (𝑆‘𝑡))) |
| 28 | 27 | sneqd 4618 | . . 3 ⊢ (𝜑 → {(𝑆‘(𝑢 + 𝑡))} = {((𝑆‘𝑢) ✚ (𝑆‘𝑡))}) |
| 29 | 28 | fveq2d 6890 | . 2 ⊢ (𝜑 → (𝐿‘{(𝑆‘(𝑢 + 𝑡))}) = (𝐿‘{((𝑆‘𝑢) ✚ (𝑆‘𝑡))})) |
| 30 | 1, 26, 29 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝐿‘{((𝑆‘𝑢) ✚ (𝑆‘𝑡))})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 {csn 4606 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 0gc0g 17455 LModclmod 20826 LSpanclspn 20937 HLchlt 39310 LHypclh 39945 DVecHcdvh 41039 LCDualclcd 41547 mapdcmpd 41585 HDMapchdma 41753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38913 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-0g 17457 df-mre 17600 df-mrc 17601 df-acs 17603 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-p1 18440 df-lat 18446 df-clat 18513 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-cntz 19304 df-oppg 19333 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-nzr 20481 df-rlreg 20662 df-domn 20663 df-drng 20699 df-lmod 20828 df-lss 20898 df-lsp 20938 df-lvec 21070 df-lsatoms 38936 df-lshyp 38937 df-lcv 38979 df-lfl 39018 df-lkr 39046 df-ldual 39084 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 df-lines 39462 df-psubsp 39464 df-pmap 39465 df-padd 39757 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 df-tgrp 40704 df-tendo 40716 df-edring 40718 df-dveca 40964 df-disoa 40990 df-dvech 41040 df-dib 41100 df-dic 41134 df-dih 41190 df-doch 41309 df-djh 41356 df-lcdual 41548 df-mapd 41586 df-hvmap 41718 df-hdmap1 41754 df-hdmap 41755 |
| This theorem is referenced by: hdmaprnlem7N 41816 |
| Copyright terms: Public domain | W3C validator |