![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem6N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | β’ π» = (LHypβπΎ) |
hdmaprnlem1.u | β’ π = ((DVecHβπΎ)βπ) |
hdmaprnlem1.v | β’ π = (Baseβπ) |
hdmaprnlem1.n | β’ π = (LSpanβπ) |
hdmaprnlem1.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmaprnlem1.l | β’ πΏ = (LSpanβπΆ) |
hdmaprnlem1.m | β’ π = ((mapdβπΎ)βπ) |
hdmaprnlem1.s | β’ π = ((HDMapβπΎ)βπ) |
hdmaprnlem1.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmaprnlem1.se | β’ (π β π β (π· β {π})) |
hdmaprnlem1.ve | β’ (π β π£ β π) |
hdmaprnlem1.e | β’ (π β (πβ(πβ{π£})) = (πΏβ{π })) |
hdmaprnlem1.ue | β’ (π β π’ β π) |
hdmaprnlem1.un | β’ (π β Β¬ π’ β (πβ{π£})) |
hdmaprnlem1.d | β’ π· = (BaseβπΆ) |
hdmaprnlem1.q | β’ π = (0gβπΆ) |
hdmaprnlem1.o | β’ 0 = (0gβπ) |
hdmaprnlem1.a | β’ β = (+gβπΆ) |
hdmaprnlem1.t2 | β’ (π β π‘ β ((πβ{π£}) β { 0 })) |
hdmaprnlem1.p | β’ + = (+gβπ) |
hdmaprnlem1.pt | β’ (π β (πΏβ{((πβπ’) β π )}) = (πβ(πβ{(π’ + π‘)}))) |
Ref | Expression |
---|---|
hdmaprnlem6N | β’ (π β (πΏβ{((πβπ’) β π )}) = (πΏβ{((πβπ’) β (πβπ‘))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.pt | . 2 β’ (π β (πΏβ{((πβπ’) β π )}) = (πβ(πβ{(π’ + π‘)}))) | |
2 | hdmaprnlem1.h | . . 3 β’ π» = (LHypβπΎ) | |
3 | hdmaprnlem1.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
4 | hdmaprnlem1.v | . . 3 β’ π = (Baseβπ) | |
5 | hdmaprnlem1.n | . . 3 β’ π = (LSpanβπ) | |
6 | hdmaprnlem1.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
7 | hdmaprnlem1.l | . . 3 β’ πΏ = (LSpanβπΆ) | |
8 | hdmaprnlem1.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
9 | hdmaprnlem1.s | . . 3 β’ π = ((HDMapβπΎ)βπ) | |
10 | hdmaprnlem1.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
11 | 2, 3, 10 | dvhlmod 40471 | . . . 4 β’ (π β π β LMod) |
12 | hdmaprnlem1.ue | . . . 4 β’ (π β π’ β π) | |
13 | hdmaprnlem1.se | . . . . 5 β’ (π β π β (π· β {π})) | |
14 | hdmaprnlem1.ve | . . . . 5 β’ (π β π£ β π) | |
15 | hdmaprnlem1.e | . . . . 5 β’ (π β (πβ(πβ{π£})) = (πΏβ{π })) | |
16 | hdmaprnlem1.un | . . . . 5 β’ (π β Β¬ π’ β (πβ{π£})) | |
17 | hdmaprnlem1.d | . . . . 5 β’ π· = (BaseβπΆ) | |
18 | hdmaprnlem1.q | . . . . 5 β’ π = (0gβπΆ) | |
19 | hdmaprnlem1.o | . . . . 5 β’ 0 = (0gβπ) | |
20 | hdmaprnlem1.a | . . . . 5 β’ β = (+gβπΆ) | |
21 | hdmaprnlem1.t2 | . . . . 5 β’ (π β π‘ β ((πβ{π£}) β { 0 })) | |
22 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 12, 16, 17, 18, 19, 20, 21 | hdmaprnlem4tN 41213 | . . . 4 β’ (π β π‘ β π) |
23 | hdmaprnlem1.p | . . . . 5 β’ + = (+gβπ) | |
24 | 4, 23 | lmodvacl 20711 | . . . 4 β’ ((π β LMod β§ π’ β π β§ π‘ β π) β (π’ + π‘) β π) |
25 | 11, 12, 22, 24 | syl3anc 1368 | . . 3 β’ (π β (π’ + π‘) β π) |
26 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 25 | hdmap10 41201 | . 2 β’ (π β (πβ(πβ{(π’ + π‘)})) = (πΏβ{(πβ(π’ + π‘))})) |
27 | 2, 3, 4, 23, 6, 20, 9, 10, 12, 22 | hdmapadd 41204 | . . . 4 β’ (π β (πβ(π’ + π‘)) = ((πβπ’) β (πβπ‘))) |
28 | 27 | sneqd 4632 | . . 3 β’ (π β {(πβ(π’ + π‘))} = {((πβπ’) β (πβπ‘))}) |
29 | 28 | fveq2d 6885 | . 2 β’ (π β (πΏβ{(πβ(π’ + π‘))}) = (πΏβ{((πβπ’) β (πβπ‘))})) |
30 | 1, 26, 29 | 3eqtrd 2768 | 1 β’ (π β (πΏβ{((πβπ’) β π )}) = (πΏβ{((πβπ’) β (πβπ‘))})) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β cdif 3937 {csn 4620 βcfv 6533 (class class class)co 7401 Basecbs 17143 +gcplusg 17196 0gc0g 17384 LModclmod 20696 LSpanclspn 20808 HLchlt 38710 LHypclh 39345 DVecHcdvh 40439 LCDualclcd 40947 mapdcmpd 40985 HDMapchdma 41153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-riotaBAD 38313 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17386 df-mre 17529 df-mrc 17530 df-acs 17532 df-proset 18250 df-poset 18268 df-plt 18285 df-lub 18301 df-glb 18302 df-join 18303 df-meet 18304 df-p0 18380 df-p1 18381 df-lat 18387 df-clat 18454 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-subg 19040 df-cntz 19223 df-oppg 19252 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20579 df-lmod 20698 df-lss 20769 df-lsp 20809 df-lvec 20941 df-lsatoms 38336 df-lshyp 38337 df-lcv 38379 df-lfl 38418 df-lkr 38446 df-ldual 38484 df-oposet 38536 df-ol 38538 df-oml 38539 df-covers 38626 df-ats 38627 df-atl 38658 df-cvlat 38682 df-hlat 38711 df-llines 38859 df-lplanes 38860 df-lvols 38861 df-lines 38862 df-psubsp 38864 df-pmap 38865 df-padd 39157 df-lhyp 39349 df-laut 39350 df-ldil 39465 df-ltrn 39466 df-trl 39520 df-tgrp 40104 df-tendo 40116 df-edring 40118 df-dveca 40364 df-disoa 40390 df-dvech 40440 df-dib 40500 df-dic 40534 df-dih 40590 df-doch 40709 df-djh 40756 df-lcdual 40948 df-mapd 40986 df-hvmap 41118 df-hdmap1 41154 df-hdmap 41155 |
This theorem is referenced by: hdmaprnlem7N 41216 |
Copyright terms: Public domain | W3C validator |