| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem7b | Structured version Visualization version GIF version | ||
| Description: Lemma for hdmapg 41897. (Contributed by NM, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmapglem7.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapglem7.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapglem7.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hdmapglem7.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapglem7.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapglem7.p | ⊢ + = (+g‘𝑈) |
| hdmapglem7.q | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmapglem7.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmapglem7.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmapglem7.a | ⊢ ⊕ = (LSSum‘𝑈) |
| hdmapglem7.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmapglem7.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapglem7.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hdmapglem7.t | ⊢ × = (.r‘𝑅) |
| hdmapglem7.z | ⊢ 0 = (0g‘𝑅) |
| hdmapglem7.c | ⊢ ✚ = (+g‘𝑅) |
| hdmapglem7.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapglem7.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hdmapglem7b.u | ⊢ (𝜑 → 𝑥 ∈ (𝑂‘{𝐸})) |
| hdmapglem7b.v | ⊢ (𝜑 → 𝑦 ∈ (𝑂‘{𝐸})) |
| hdmapglem7b.k | ⊢ (𝜑 → 𝑚 ∈ 𝐵) |
| hdmapglem7b.l | ⊢ (𝜑 → 𝑛 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| hdmapglem7b | ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapglem7.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmapglem7.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmapglem7.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmapglem7.p | . . 3 ⊢ + = (+g‘𝑈) | |
| 5 | hdmapglem7.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 6 | hdmapglem7.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 7 | hdmapglem7.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | hdmapglem7.c | . . 3 ⊢ ✚ = (+g‘𝑅) | |
| 9 | hdmapglem7.t | . . 3 ⊢ × = (.r‘𝑅) | |
| 10 | hdmapglem7.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 11 | hdmapglem7.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 12 | hdmapglem7.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 13 | 1, 2, 12 | dvhlmod 41077 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 14 | hdmapglem7b.l | . . . . 5 ⊢ (𝜑 → 𝑛 ∈ 𝐵) | |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 16 | eqid 2729 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 17 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 18 | hdmapglem7.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 19 | 1, 15, 16, 2, 3, 17, 18, 12 | dvheveccl 41079 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 20 | 19 | eldifad 3923 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 21 | 3, 6, 5, 7 | lmodvscl 20760 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑛 ∈ 𝐵 ∧ 𝐸 ∈ 𝑉) → (𝑛 · 𝐸) ∈ 𝑉) |
| 22 | 13, 14, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑛 · 𝐸) ∈ 𝑉) |
| 23 | 20 | snssd 4769 | . . . . . 6 ⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
| 24 | hdmapglem7.o | . . . . . . 7 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 25 | 1, 2, 3, 24 | dochssv 41322 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
| 26 | 12, 23, 25 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
| 27 | hdmapglem7b.v | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ (𝑂‘{𝐸})) | |
| 28 | 26, 27 | sseldd 3944 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ 𝑉) |
| 29 | 3, 4 | lmodvacl 20757 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ (𝑛 · 𝐸) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑛 · 𝐸) + 𝑦) ∈ 𝑉) |
| 30 | 13, 22, 28, 29 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑛 · 𝐸) + 𝑦) ∈ 𝑉) |
| 31 | hdmapglem7b.u | . . . 4 ⊢ (𝜑 → 𝑥 ∈ (𝑂‘{𝐸})) | |
| 32 | 26, 31 | sseldd 3944 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝑉) |
| 33 | hdmapglem7b.k | . . 3 ⊢ (𝜑 → 𝑚 ∈ 𝐵) | |
| 34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 30, 20, 32, 33 | hdmapgln2 41879 | . 2 ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦)))) |
| 35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 20, 28, 20, 14 | hdmapln1 41873 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × ((𝑆‘𝐸)‘𝐸)) ✚ ((𝑆‘𝐸)‘𝑦))) |
| 36 | eqid 2729 | . . . . . . . . 9 ⊢ ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) | |
| 37 | eqid 2729 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 38 | 1, 18, 36, 10, 12, 2, 6, 37 | hdmapevec2 41803 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = (1r‘𝑅)) |
| 39 | 38 | oveq2d 7385 | . . . . . . 7 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝐸)‘𝐸)) = (𝑛 × (1r‘𝑅))) |
| 40 | 6 | lmodring 20750 | . . . . . . . . 9 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
| 41 | 13, 40 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 42 | 7, 9, 37 | ringridm 20155 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ 𝐵) → (𝑛 × (1r‘𝑅)) = 𝑛) |
| 43 | 41, 14, 42 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑛 × (1r‘𝑅)) = 𝑛) |
| 44 | 39, 43 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝐸)‘𝐸)) = 𝑛) |
| 45 | hdmapglem7.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 46 | 1, 18, 24, 2, 3, 6, 7, 9, 45, 10, 12, 27 | hdmapinvlem1 41885 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝑦) = 0 ) |
| 47 | 44, 46 | oveq12d 7387 | . . . . 5 ⊢ (𝜑 → ((𝑛 × ((𝑆‘𝐸)‘𝐸)) ✚ ((𝑆‘𝐸)‘𝑦)) = (𝑛 ✚ 0 )) |
| 48 | ringgrp 20123 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 49 | 41, 48 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 50 | 7, 8, 45 | grprid 18876 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑛 ∈ 𝐵) → (𝑛 ✚ 0 ) = 𝑛) |
| 51 | 49, 14, 50 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑛 ✚ 0 ) = 𝑛) |
| 52 | 35, 47, 51 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) = 𝑛) |
| 53 | 52 | oveq1d 7384 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺‘𝑚)) = (𝑛 × (𝐺‘𝑚))) |
| 54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 20, 28, 32, 14 | hdmapln1 41873 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × ((𝑆‘𝑥)‘𝐸)) ✚ ((𝑆‘𝑥)‘𝑦))) |
| 55 | 1, 18, 24, 2, 3, 6, 7, 9, 45, 10, 12, 31 | hdmapinvlem2 41886 | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝑥)‘𝐸) = 0 ) |
| 56 | 55 | oveq2d 7385 | . . . . . 6 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝑥)‘𝐸)) = (𝑛 × 0 )) |
| 57 | 7, 9, 45 | ringrz 20179 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ 𝐵) → (𝑛 × 0 ) = 0 ) |
| 58 | 41, 14, 57 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑛 × 0 ) = 0 ) |
| 59 | 56, 58 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝑥)‘𝐸)) = 0 ) |
| 60 | 59 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → ((𝑛 × ((𝑆‘𝑥)‘𝐸)) ✚ ((𝑆‘𝑥)‘𝑦)) = ( 0 ✚ ((𝑆‘𝑥)‘𝑦))) |
| 61 | 1, 2, 3, 6, 7, 10, 12, 28, 32 | hdmapipcl 41872 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝑥)‘𝑦) ∈ 𝐵) |
| 62 | 7, 8, 45 | grplid 18875 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ((𝑆‘𝑥)‘𝑦) ∈ 𝐵) → ( 0 ✚ ((𝑆‘𝑥)‘𝑦)) = ((𝑆‘𝑥)‘𝑦)) |
| 63 | 49, 61, 62 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( 0 ✚ ((𝑆‘𝑥)‘𝑦)) = ((𝑆‘𝑥)‘𝑦)) |
| 64 | 54, 60, 63 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑆‘𝑥)‘𝑦)) |
| 65 | 53, 64 | oveq12d 7387 | . 2 ⊢ (𝜑 → ((((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦))) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) |
| 66 | 34, 65 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 {csn 4585 〈cop 4591 I cid 5525 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 Grpcgrp 18841 LSSumclsm 19540 1rcur 20066 Ringcrg 20118 LModclmod 20742 LSpanclspn 20853 HLchlt 39316 LHypclh 39951 LTrncltrn 40068 DVecHcdvh 41045 ocHcoch 41314 HVMapchvm 41723 HDMapchdma 41759 HGMapchg 41850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-oppg 19254 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lsatoms 38942 df-lshyp 38943 df-lcv 38985 df-lfl 39024 df-lkr 39052 df-ldual 39090 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tgrp 40710 df-tendo 40722 df-edring 40724 df-dveca 40970 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 df-doch 41315 df-djh 41362 df-lcdual 41554 df-mapd 41592 df-hvmap 41724 df-hdmap1 41760 df-hdmap 41761 df-hgmap 41851 |
| This theorem is referenced by: hdmapglem7 41896 |
| Copyright terms: Public domain | W3C validator |