Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem7b Structured version   Visualization version   GIF version

Theorem hdmapglem7b 41895
Description: Lemma for hdmapg 41897. (Contributed by NM, 14-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem7.h 𝐻 = (LHyp‘𝐾)
hdmapglem7.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem7.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem7.v 𝑉 = (Base‘𝑈)
hdmapglem7.p + = (+g𝑈)
hdmapglem7.q · = ( ·𝑠𝑈)
hdmapglem7.r 𝑅 = (Scalar‘𝑈)
hdmapglem7.b 𝐵 = (Base‘𝑅)
hdmapglem7.a = (LSSum‘𝑈)
hdmapglem7.n 𝑁 = (LSpan‘𝑈)
hdmapglem7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem7.x (𝜑𝑋𝑉)
hdmapglem7.t × = (.r𝑅)
hdmapglem7.z 0 = (0g𝑅)
hdmapglem7.c = (+g𝑅)
hdmapglem7.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem7.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem7b.u (𝜑𝑥 ∈ (𝑂‘{𝐸}))
hdmapglem7b.v (𝜑𝑦 ∈ (𝑂‘{𝐸}))
hdmapglem7b.k (𝜑𝑚𝐵)
hdmapglem7b.l (𝜑𝑛𝐵)
Assertion
Ref Expression
hdmapglem7b (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺𝑚)) ((𝑆𝑥)‘𝑦)))

Proof of Theorem hdmapglem7b
StepHypRef Expression
1 hdmapglem7.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmapglem7.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapglem7.v . . 3 𝑉 = (Base‘𝑈)
4 hdmapglem7.p . . 3 + = (+g𝑈)
5 hdmapglem7.q . . 3 · = ( ·𝑠𝑈)
6 hdmapglem7.r . . 3 𝑅 = (Scalar‘𝑈)
7 hdmapglem7.b . . 3 𝐵 = (Base‘𝑅)
8 hdmapglem7.c . . 3 = (+g𝑅)
9 hdmapglem7.t . . 3 × = (.r𝑅)
10 hdmapglem7.s . . 3 𝑆 = ((HDMap‘𝐾)‘𝑊)
11 hdmapglem7.g . . 3 𝐺 = ((HGMap‘𝐾)‘𝑊)
12 hdmapglem7.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 12dvhlmod 41077 . . . 4 (𝜑𝑈 ∈ LMod)
14 hdmapglem7b.l . . . . 5 (𝜑𝑛𝐵)
15 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
16 eqid 2729 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
17 eqid 2729 . . . . . . 7 (0g𝑈) = (0g𝑈)
18 hdmapglem7.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
191, 15, 16, 2, 3, 17, 18, 12dvheveccl 41079 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
2019eldifad 3923 . . . . 5 (𝜑𝐸𝑉)
213, 6, 5, 7lmodvscl 20760 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑛𝐵𝐸𝑉) → (𝑛 · 𝐸) ∈ 𝑉)
2213, 14, 20, 21syl3anc 1373 . . . 4 (𝜑 → (𝑛 · 𝐸) ∈ 𝑉)
2320snssd 4769 . . . . . 6 (𝜑 → {𝐸} ⊆ 𝑉)
24 hdmapglem7.o . . . . . . 7 𝑂 = ((ocH‘𝐾)‘𝑊)
251, 2, 3, 24dochssv 41322 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
2612, 23, 25syl2anc 584 . . . . 5 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
27 hdmapglem7b.v . . . . 5 (𝜑𝑦 ∈ (𝑂‘{𝐸}))
2826, 27sseldd 3944 . . . 4 (𝜑𝑦𝑉)
293, 4lmodvacl 20757 . . . 4 ((𝑈 ∈ LMod ∧ (𝑛 · 𝐸) ∈ 𝑉𝑦𝑉) → ((𝑛 · 𝐸) + 𝑦) ∈ 𝑉)
3013, 22, 28, 29syl3anc 1373 . . 3 (𝜑 → ((𝑛 · 𝐸) + 𝑦) ∈ 𝑉)
31 hdmapglem7b.u . . . 4 (𝜑𝑥 ∈ (𝑂‘{𝐸}))
3226, 31sseldd 3944 . . 3 (𝜑𝑥𝑉)
33 hdmapglem7b.k . . 3 (𝜑𝑚𝐵)
341, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 30, 20, 32, 33hdmapgln2 41879 . 2 (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((((𝑆𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺𝑚)) ((𝑆𝑥)‘((𝑛 · 𝐸) + 𝑦))))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 20, 28, 20, 14hdmapln1 41873 . . . . 5 (𝜑 → ((𝑆𝐸)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × ((𝑆𝐸)‘𝐸)) ((𝑆𝐸)‘𝑦)))
36 eqid 2729 . . . . . . . . 9 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
37 eqid 2729 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
381, 18, 36, 10, 12, 2, 6, 37hdmapevec2 41803 . . . . . . . 8 (𝜑 → ((𝑆𝐸)‘𝐸) = (1r𝑅))
3938oveq2d 7385 . . . . . . 7 (𝜑 → (𝑛 × ((𝑆𝐸)‘𝐸)) = (𝑛 × (1r𝑅)))
406lmodring 20750 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
4113, 40syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
427, 9, 37ringridm 20155 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑛𝐵) → (𝑛 × (1r𝑅)) = 𝑛)
4341, 14, 42syl2anc 584 . . . . . . 7 (𝜑 → (𝑛 × (1r𝑅)) = 𝑛)
4439, 43eqtrd 2764 . . . . . 6 (𝜑 → (𝑛 × ((𝑆𝐸)‘𝐸)) = 𝑛)
45 hdmapglem7.z . . . . . . 7 0 = (0g𝑅)
461, 18, 24, 2, 3, 6, 7, 9, 45, 10, 12, 27hdmapinvlem1 41885 . . . . . 6 (𝜑 → ((𝑆𝐸)‘𝑦) = 0 )
4744, 46oveq12d 7387 . . . . 5 (𝜑 → ((𝑛 × ((𝑆𝐸)‘𝐸)) ((𝑆𝐸)‘𝑦)) = (𝑛 0 ))
48 ringgrp 20123 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4941, 48syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
507, 8, 45grprid 18876 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑛𝐵) → (𝑛 0 ) = 𝑛)
5149, 14, 50syl2anc 584 . . . . 5 (𝜑 → (𝑛 0 ) = 𝑛)
5235, 47, 513eqtrd 2768 . . . 4 (𝜑 → ((𝑆𝐸)‘((𝑛 · 𝐸) + 𝑦)) = 𝑛)
5352oveq1d 7384 . . 3 (𝜑 → (((𝑆𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺𝑚)) = (𝑛 × (𝐺𝑚)))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 20, 28, 32, 14hdmapln1 41873 . . . 4 (𝜑 → ((𝑆𝑥)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × ((𝑆𝑥)‘𝐸)) ((𝑆𝑥)‘𝑦)))
551, 18, 24, 2, 3, 6, 7, 9, 45, 10, 12, 31hdmapinvlem2 41886 . . . . . . 7 (𝜑 → ((𝑆𝑥)‘𝐸) = 0 )
5655oveq2d 7385 . . . . . 6 (𝜑 → (𝑛 × ((𝑆𝑥)‘𝐸)) = (𝑛 × 0 ))
577, 9, 45ringrz 20179 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑛𝐵) → (𝑛 × 0 ) = 0 )
5841, 14, 57syl2anc 584 . . . . . 6 (𝜑 → (𝑛 × 0 ) = 0 )
5956, 58eqtrd 2764 . . . . 5 (𝜑 → (𝑛 × ((𝑆𝑥)‘𝐸)) = 0 )
6059oveq1d 7384 . . . 4 (𝜑 → ((𝑛 × ((𝑆𝑥)‘𝐸)) ((𝑆𝑥)‘𝑦)) = ( 0 ((𝑆𝑥)‘𝑦)))
611, 2, 3, 6, 7, 10, 12, 28, 32hdmapipcl 41872 . . . . 5 (𝜑 → ((𝑆𝑥)‘𝑦) ∈ 𝐵)
627, 8, 45grplid 18875 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝑆𝑥)‘𝑦) ∈ 𝐵) → ( 0 ((𝑆𝑥)‘𝑦)) = ((𝑆𝑥)‘𝑦))
6349, 61, 62syl2anc 584 . . . 4 (𝜑 → ( 0 ((𝑆𝑥)‘𝑦)) = ((𝑆𝑥)‘𝑦))
6454, 60, 633eqtrd 2768 . . 3 (𝜑 → ((𝑆𝑥)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑆𝑥)‘𝑦))
6553, 64oveq12d 7387 . 2 (𝜑 → ((((𝑆𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺𝑚)) ((𝑆𝑥)‘((𝑛 · 𝐸) + 𝑦))) = ((𝑛 × (𝐺𝑚)) ((𝑆𝑥)‘𝑦)))
6634, 65eqtrd 2764 1 (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺𝑚)) ((𝑆𝑥)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  {csn 4585  cop 4591   I cid 5525  cres 5633  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  Grpcgrp 18841  LSSumclsm 19540  1rcur 20066  Ringcrg 20118  LModclmod 20742  LSpanclspn 20853  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  DVecHcdvh 41045  ocHcoch 41314  HVMapchvm 41723  HDMapchdma 41759  HGMapchg 41850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-oppg 19254  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lsatoms 38942  df-lshyp 38943  df-lcv 38985  df-lfl 39024  df-lkr 39052  df-ldual 39090  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tgrp 40710  df-tendo 40722  df-edring 40724  df-dveca 40970  df-disoa 40996  df-dvech 41046  df-dib 41106  df-dic 41140  df-dih 41196  df-doch 41315  df-djh 41362  df-lcdual 41554  df-mapd 41592  df-hvmap 41724  df-hdmap1 41760  df-hdmap 41761  df-hgmap 41851
This theorem is referenced by:  hdmapglem7  41896
  Copyright terms: Public domain W3C validator