Step | Hyp | Ref
| Expression |
1 | | hdmapglem7.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | hdmapglem7.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
3 | | hdmapglem7.v |
. . 3
β’ π = (Baseβπ) |
4 | | hdmapglem7.p |
. . 3
β’ + =
(+gβπ) |
5 | | hdmapglem7.q |
. . 3
β’ Β· = (
Β·π βπ) |
6 | | hdmapglem7.r |
. . 3
β’ π
= (Scalarβπ) |
7 | | hdmapglem7.b |
. . 3
β’ π΅ = (Baseβπ
) |
8 | | hdmapglem7.c |
. . 3
β’ β =
(+gβπ
) |
9 | | hdmapglem7.t |
. . 3
β’ Γ =
(.rβπ
) |
10 | | hdmapglem7.s |
. . 3
β’ π = ((HDMapβπΎ)βπ) |
11 | | hdmapglem7.g |
. . 3
β’ πΊ = ((HGMapβπΎ)βπ) |
12 | | hdmapglem7.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
13 | 1, 2, 12 | dvhlmod 39969 |
. . . 4
β’ (π β π β LMod) |
14 | | hdmapglem7b.l |
. . . . 5
β’ (π β π β π΅) |
15 | | eqid 2732 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
16 | | eqid 2732 |
. . . . . . 7
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
17 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
18 | | hdmapglem7.e |
. . . . . . 7
β’ πΈ = β¨( I βΎ
(BaseβπΎ)), ( I
βΎ ((LTrnβπΎ)βπ))β© |
19 | 1, 15, 16, 2, 3, 17, 18, 12 | dvheveccl 39971 |
. . . . . 6
β’ (π β πΈ β (π β {(0gβπ)})) |
20 | 19 | eldifad 3959 |
. . . . 5
β’ (π β πΈ β π) |
21 | 3, 6, 5, 7 | lmodvscl 20481 |
. . . . 5
β’ ((π β LMod β§ π β π΅ β§ πΈ β π) β (π Β· πΈ) β π) |
22 | 13, 14, 20, 21 | syl3anc 1371 |
. . . 4
β’ (π β (π Β· πΈ) β π) |
23 | 20 | snssd 4811 |
. . . . . 6
β’ (π β {πΈ} β π) |
24 | | hdmapglem7.o |
. . . . . . 7
β’ π = ((ocHβπΎ)βπ) |
25 | 1, 2, 3, 24 | dochssv 40214 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ {πΈ} β π) β (πβ{πΈ}) β π) |
26 | 12, 23, 25 | syl2anc 584 |
. . . . 5
β’ (π β (πβ{πΈ}) β π) |
27 | | hdmapglem7b.v |
. . . . 5
β’ (π β π¦ β (πβ{πΈ})) |
28 | 26, 27 | sseldd 3982 |
. . . 4
β’ (π β π¦ β π) |
29 | 3, 4 | lmodvacl 20478 |
. . . 4
β’ ((π β LMod β§ (π Β· πΈ) β π β§ π¦ β π) β ((π Β· πΈ) + π¦) β π) |
30 | 13, 22, 28, 29 | syl3anc 1371 |
. . 3
β’ (π β ((π Β· πΈ) + π¦) β π) |
31 | | hdmapglem7b.u |
. . . 4
β’ (π β π₯ β (πβ{πΈ})) |
32 | 26, 31 | sseldd 3982 |
. . 3
β’ (π β π₯ β π) |
33 | | hdmapglem7b.k |
. . 3
β’ (π β π β π΅) |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 30, 20, 32, 33 | hdmapgln2 40771 |
. 2
β’ (π β ((πβ((π Β· πΈ) + π₯))β((π Β· πΈ) + π¦)) = ((((πβπΈ)β((π Β· πΈ) + π¦)) Γ (πΊβπ)) β ((πβπ₯)β((π Β· πΈ) + π¦)))) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
12, 20, 28, 20, 14 | hdmapln1 40765 |
. . . . 5
β’ (π β ((πβπΈ)β((π Β· πΈ) + π¦)) = ((π Γ ((πβπΈ)βπΈ)) β ((πβπΈ)βπ¦))) |
36 | | eqid 2732 |
. . . . . . . . 9
β’
((HVMapβπΎ)βπ) = ((HVMapβπΎ)βπ) |
37 | | eqid 2732 |
. . . . . . . . 9
β’
(1rβπ
) = (1rβπ
) |
38 | 1, 18, 36, 10, 12, 2, 6, 37 | hdmapevec2 40695 |
. . . . . . . 8
β’ (π β ((πβπΈ)βπΈ) = (1rβπ
)) |
39 | 38 | oveq2d 7421 |
. . . . . . 7
β’ (π β (π Γ ((πβπΈ)βπΈ)) = (π Γ
(1rβπ
))) |
40 | 6 | lmodring 20471 |
. . . . . . . . 9
β’ (π β LMod β π
β Ring) |
41 | 13, 40 | syl 17 |
. . . . . . . 8
β’ (π β π
β Ring) |
42 | 7, 9, 37 | ringridm 20080 |
. . . . . . . 8
β’ ((π
β Ring β§ π β π΅) β (π Γ
(1rβπ
)) =
π) |
43 | 41, 14, 42 | syl2anc 584 |
. . . . . . 7
β’ (π β (π Γ
(1rβπ
)) =
π) |
44 | 39, 43 | eqtrd 2772 |
. . . . . 6
β’ (π β (π Γ ((πβπΈ)βπΈ)) = π) |
45 | | hdmapglem7.z |
. . . . . . 7
β’ 0 =
(0gβπ
) |
46 | 1, 18, 24, 2, 3, 6,
7, 9, 45, 10, 12, 27 | hdmapinvlem1 40777 |
. . . . . 6
β’ (π β ((πβπΈ)βπ¦) = 0 ) |
47 | 44, 46 | oveq12d 7423 |
. . . . 5
β’ (π β ((π Γ ((πβπΈ)βπΈ)) β ((πβπΈ)βπ¦)) = (π β 0 )) |
48 | | ringgrp 20054 |
. . . . . . 7
β’ (π
β Ring β π
β Grp) |
49 | 41, 48 | syl 17 |
. . . . . 6
β’ (π β π
β Grp) |
50 | 7, 8, 45 | grprid 18849 |
. . . . . 6
β’ ((π
β Grp β§ π β π΅) β (π β 0 ) = π) |
51 | 49, 14, 50 | syl2anc 584 |
. . . . 5
β’ (π β (π β 0 ) = π) |
52 | 35, 47, 51 | 3eqtrd 2776 |
. . . 4
β’ (π β ((πβπΈ)β((π Β· πΈ) + π¦)) = π) |
53 | 52 | oveq1d 7420 |
. . 3
β’ (π β (((πβπΈ)β((π Β· πΈ) + π¦)) Γ (πΊβπ)) = (π Γ (πΊβπ))) |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
12, 20, 28, 32, 14 | hdmapln1 40765 |
. . . 4
β’ (π β ((πβπ₯)β((π Β· πΈ) + π¦)) = ((π Γ ((πβπ₯)βπΈ)) β ((πβπ₯)βπ¦))) |
55 | 1, 18, 24, 2, 3, 6,
7, 9, 45, 10, 12, 31 | hdmapinvlem2 40778 |
. . . . . . 7
β’ (π β ((πβπ₯)βπΈ) = 0 ) |
56 | 55 | oveq2d 7421 |
. . . . . 6
β’ (π β (π Γ ((πβπ₯)βπΈ)) = (π Γ 0 )) |
57 | 7, 9, 45 | ringrz 20101 |
. . . . . . 7
β’ ((π
β Ring β§ π β π΅) β (π Γ 0 ) = 0 ) |
58 | 41, 14, 57 | syl2anc 584 |
. . . . . 6
β’ (π β (π Γ 0 ) = 0 ) |
59 | 56, 58 | eqtrd 2772 |
. . . . 5
β’ (π β (π Γ ((πβπ₯)βπΈ)) = 0 ) |
60 | 59 | oveq1d 7420 |
. . . 4
β’ (π β ((π Γ ((πβπ₯)βπΈ)) β ((πβπ₯)βπ¦)) = ( 0 β ((πβπ₯)βπ¦))) |
61 | 1, 2, 3, 6, 7, 10,
12, 28, 32 | hdmapipcl 40764 |
. . . . 5
β’ (π β ((πβπ₯)βπ¦) β π΅) |
62 | 7, 8, 45 | grplid 18848 |
. . . . 5
β’ ((π
β Grp β§ ((πβπ₯)βπ¦) β π΅) β ( 0 β ((πβπ₯)βπ¦)) = ((πβπ₯)βπ¦)) |
63 | 49, 61, 62 | syl2anc 584 |
. . . 4
β’ (π β ( 0 β ((πβπ₯)βπ¦)) = ((πβπ₯)βπ¦)) |
64 | 54, 60, 63 | 3eqtrd 2776 |
. . 3
β’ (π β ((πβπ₯)β((π Β· πΈ) + π¦)) = ((πβπ₯)βπ¦)) |
65 | 53, 64 | oveq12d 7423 |
. 2
β’ (π β ((((πβπΈ)β((π Β· πΈ) + π¦)) Γ (πΊβπ)) β ((πβπ₯)β((π Β· πΈ) + π¦))) = ((π Γ (πΊβπ)) β ((πβπ₯)βπ¦))) |
66 | 34, 65 | eqtrd 2772 |
1
β’ (π β ((πβ((π Β· πΈ) + π₯))β((π Β· πΈ) + π¦)) = ((π Γ (πΊβπ)) β ((πβπ₯)βπ¦))) |