![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem7b | Structured version Visualization version GIF version |
Description: Lemma for hdmapg 38000. (Contributed by NM, 14-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem7.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapglem7.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapglem7.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hdmapglem7.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapglem7.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapglem7.p | ⊢ + = (+g‘𝑈) |
hdmapglem7.q | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmapglem7.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapglem7.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmapglem7.a | ⊢ ⊕ = (LSSum‘𝑈) |
hdmapglem7.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmapglem7.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapglem7.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hdmapglem7.t | ⊢ × = (.r‘𝑅) |
hdmapglem7.z | ⊢ 0 = (0g‘𝑅) |
hdmapglem7.c | ⊢ ✚ = (+g‘𝑅) |
hdmapglem7.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapglem7.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hdmapglem7b.u | ⊢ (𝜑 → 𝑥 ∈ (𝑂‘{𝐸})) |
hdmapglem7b.v | ⊢ (𝜑 → 𝑦 ∈ (𝑂‘{𝐸})) |
hdmapglem7b.k | ⊢ (𝜑 → 𝑚 ∈ 𝐵) |
hdmapglem7b.l | ⊢ (𝜑 → 𝑛 ∈ 𝐵) |
Ref | Expression |
---|---|
hdmapglem7b | ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem7.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapglem7.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmapglem7.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmapglem7.p | . . 3 ⊢ + = (+g‘𝑈) | |
5 | hdmapglem7.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
6 | hdmapglem7.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
7 | hdmapglem7.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
8 | hdmapglem7.c | . . 3 ⊢ ✚ = (+g‘𝑅) | |
9 | hdmapglem7.t | . . 3 ⊢ × = (.r‘𝑅) | |
10 | hdmapglem7.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
11 | hdmapglem7.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
12 | hdmapglem7.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
13 | 1, 2, 12 | dvhlmod 37180 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
14 | hdmapglem7b.l | . . . . 5 ⊢ (𝜑 → 𝑛 ∈ 𝐵) | |
15 | eqid 2825 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
16 | eqid 2825 | . . . . . . 7 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
17 | eqid 2825 | . . . . . . 7 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
18 | hdmapglem7.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
19 | 1, 15, 16, 2, 3, 17, 18, 12 | dvheveccl 37182 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
20 | 19 | eldifad 3810 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
21 | 3, 6, 5, 7 | lmodvscl 19243 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑛 ∈ 𝐵 ∧ 𝐸 ∈ 𝑉) → (𝑛 · 𝐸) ∈ 𝑉) |
22 | 13, 14, 20, 21 | syl3anc 1494 | . . . 4 ⊢ (𝜑 → (𝑛 · 𝐸) ∈ 𝑉) |
23 | 20 | snssd 4560 | . . . . . 6 ⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
24 | hdmapglem7.o | . . . . . . 7 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
25 | 1, 2, 3, 24 | dochssv 37425 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
26 | 12, 23, 25 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
27 | hdmapglem7b.v | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ (𝑂‘{𝐸})) | |
28 | 26, 27 | sseldd 3828 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ 𝑉) |
29 | 3, 4 | lmodvacl 19240 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ (𝑛 · 𝐸) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑛 · 𝐸) + 𝑦) ∈ 𝑉) |
30 | 13, 22, 28, 29 | syl3anc 1494 | . . 3 ⊢ (𝜑 → ((𝑛 · 𝐸) + 𝑦) ∈ 𝑉) |
31 | hdmapglem7b.u | . . . 4 ⊢ (𝜑 → 𝑥 ∈ (𝑂‘{𝐸})) | |
32 | 26, 31 | sseldd 3828 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝑉) |
33 | hdmapglem7b.k | . . 3 ⊢ (𝜑 → 𝑚 ∈ 𝐵) | |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 30, 20, 32, 33 | hdmapgln2 37982 | . 2 ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦)))) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 20, 28, 20, 14 | hdmapln1 37976 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × ((𝑆‘𝐸)‘𝐸)) ✚ ((𝑆‘𝐸)‘𝑦))) |
36 | eqid 2825 | . . . . . . . . 9 ⊢ ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) | |
37 | eqid 2825 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
38 | 1, 18, 36, 10, 12, 2, 6, 37 | hdmapevec2 37906 | . . . . . . . 8 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = (1r‘𝑅)) |
39 | 38 | oveq2d 6926 | . . . . . . 7 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝐸)‘𝐸)) = (𝑛 × (1r‘𝑅))) |
40 | 6 | lmodring 19234 | . . . . . . . . 9 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
41 | 13, 40 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
42 | 7, 9, 37 | ringridm 18933 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ 𝐵) → (𝑛 × (1r‘𝑅)) = 𝑛) |
43 | 41, 14, 42 | syl2anc 579 | . . . . . . 7 ⊢ (𝜑 → (𝑛 × (1r‘𝑅)) = 𝑛) |
44 | 39, 43 | eqtrd 2861 | . . . . . 6 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝐸)‘𝐸)) = 𝑛) |
45 | hdmapglem7.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
46 | 1, 18, 24, 2, 3, 6, 7, 9, 45, 10, 12, 27 | hdmapinvlem1 37988 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐸)‘𝑦) = 0 ) |
47 | 44, 46 | oveq12d 6928 | . . . . 5 ⊢ (𝜑 → ((𝑛 × ((𝑆‘𝐸)‘𝐸)) ✚ ((𝑆‘𝐸)‘𝑦)) = (𝑛 ✚ 0 )) |
48 | ringgrp 18913 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
49 | 41, 48 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
50 | 7, 8, 45 | grprid 17814 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝑛 ∈ 𝐵) → (𝑛 ✚ 0 ) = 𝑛) |
51 | 49, 14, 50 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → (𝑛 ✚ 0 ) = 𝑛) |
52 | 35, 47, 51 | 3eqtrd 2865 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) = 𝑛) |
53 | 52 | oveq1d 6925 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺‘𝑚)) = (𝑛 × (𝐺‘𝑚))) |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 20, 28, 32, 14 | hdmapln1 37976 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × ((𝑆‘𝑥)‘𝐸)) ✚ ((𝑆‘𝑥)‘𝑦))) |
55 | 1, 18, 24, 2, 3, 6, 7, 9, 45, 10, 12, 31 | hdmapinvlem2 37989 | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝑥)‘𝐸) = 0 ) |
56 | 55 | oveq2d 6926 | . . . . . 6 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝑥)‘𝐸)) = (𝑛 × 0 )) |
57 | 7, 9, 45 | ringrz 18949 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ 𝐵) → (𝑛 × 0 ) = 0 ) |
58 | 41, 14, 57 | syl2anc 579 | . . . . . 6 ⊢ (𝜑 → (𝑛 × 0 ) = 0 ) |
59 | 56, 58 | eqtrd 2861 | . . . . 5 ⊢ (𝜑 → (𝑛 × ((𝑆‘𝑥)‘𝐸)) = 0 ) |
60 | 59 | oveq1d 6925 | . . . 4 ⊢ (𝜑 → ((𝑛 × ((𝑆‘𝑥)‘𝐸)) ✚ ((𝑆‘𝑥)‘𝑦)) = ( 0 ✚ ((𝑆‘𝑥)‘𝑦))) |
61 | 1, 2, 3, 6, 7, 10, 12, 28, 32 | hdmapipcl 37975 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝑥)‘𝑦) ∈ 𝐵) |
62 | 7, 8, 45 | grplid 17813 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ((𝑆‘𝑥)‘𝑦) ∈ 𝐵) → ( 0 ✚ ((𝑆‘𝑥)‘𝑦)) = ((𝑆‘𝑥)‘𝑦)) |
63 | 49, 61, 62 | syl2anc 579 | . . . 4 ⊢ (𝜑 → ( 0 ✚ ((𝑆‘𝑥)‘𝑦)) = ((𝑆‘𝑥)‘𝑦)) |
64 | 54, 60, 63 | 3eqtrd 2865 | . . 3 ⊢ (𝜑 → ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦)) = ((𝑆‘𝑥)‘𝑦)) |
65 | 53, 64 | oveq12d 6928 | . 2 ⊢ (𝜑 → ((((𝑆‘𝐸)‘((𝑛 · 𝐸) + 𝑦)) × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘((𝑛 · 𝐸) + 𝑦))) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) |
66 | 34, 65 | eqtrd 2861 | 1 ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 {csn 4399 〈cop 4405 I cid 5251 ↾ cres 5348 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 .rcmulr 16313 Scalarcsca 16315 ·𝑠 cvsca 16316 0gc0g 16460 Grpcgrp 17783 LSSumclsm 18407 1rcur 18862 Ringcrg 18908 LModclmod 19226 LSpanclspn 19337 HLchlt 35420 LHypclh 36054 LTrncltrn 36171 DVecHcdvh 37148 ocHcoch 37417 HVMapchvm 37826 HDMapchdma 37862 HGMapchg 37953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-riotaBAD 35023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-ot 4408 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-tpos 7622 df-undef 7669 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-sca 16328 df-vsca 16329 df-0g 16462 df-mre 16606 df-mrc 16607 df-acs 16609 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-submnd 17696 df-grp 17786 df-minusg 17787 df-sbg 17788 df-subg 17949 df-cntz 18107 df-oppg 18133 df-lsm 18409 df-cmn 18555 df-abl 18556 df-mgp 18851 df-ur 18863 df-ring 18910 df-oppr 18984 df-dvdsr 19002 df-unit 19003 df-invr 19033 df-dvr 19044 df-drng 19112 df-lmod 19228 df-lss 19296 df-lsp 19338 df-lvec 19469 df-lsatoms 35046 df-lshyp 35047 df-lcv 35089 df-lfl 35128 df-lkr 35156 df-ldual 35194 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-llines 35568 df-lplanes 35569 df-lvols 35570 df-lines 35571 df-psubsp 35573 df-pmap 35574 df-padd 35866 df-lhyp 36058 df-laut 36059 df-ldil 36174 df-ltrn 36175 df-trl 36229 df-tgrp 36813 df-tendo 36825 df-edring 36827 df-dveca 37073 df-disoa 37099 df-dvech 37149 df-dib 37209 df-dic 37243 df-dih 37299 df-doch 37418 df-djh 37465 df-lcdual 37657 df-mapd 37695 df-hvmap 37827 df-hdmap1 37863 df-hdmap 37864 df-hgmap 37954 |
This theorem is referenced by: hdmapglem7 37999 |
Copyright terms: Public domain | W3C validator |