Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem10 Structured version   Visualization version   GIF version

Theorem hdmap14lem10 39891
Description: Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem8.h 𝐻 = (LHyp‘𝐾)
hdmap14lem8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem8.v 𝑉 = (Base‘𝑈)
hdmap14lem8.q + = (+g𝑈)
hdmap14lem8.t · = ( ·𝑠𝑈)
hdmap14lem8.o 0 = (0g𝑈)
hdmap14lem8.n 𝑁 = (LSpan‘𝑈)
hdmap14lem8.r 𝑅 = (Scalar‘𝑈)
hdmap14lem8.b 𝐵 = (Base‘𝑅)
hdmap14lem8.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem8.d = (+g𝐶)
hdmap14lem8.e = ( ·𝑠𝐶)
hdmap14lem8.p 𝑃 = (Scalar‘𝐶)
hdmap14lem8.a 𝐴 = (Base‘𝑃)
hdmap14lem8.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem8.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem8.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem8.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap14lem8.f (𝜑𝐹𝐵)
hdmap14lem8.g (𝜑𝐺𝐴)
hdmap14lem8.i (𝜑𝐼𝐴)
hdmap14lem8.xx (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
hdmap14lem8.yy (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 (𝑆𝑌)))
hdmap14lem8.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
hdmap14lem10 (𝜑𝐺 = 𝐼)

Proof of Theorem hdmap14lem10
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem8.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap14lem8.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap14lem8.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap14lem8.t . . 3 · = ( ·𝑠𝑈)
5 hdmap14lem8.r . . 3 𝑅 = (Scalar‘𝑈)
6 hdmap14lem8.b . . 3 𝐵 = (Base‘𝑅)
7 hdmap14lem8.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap14lem8.e . . 3 = ( ·𝑠𝐶)
9 eqid 2738 . . 3 (LSpan‘𝐶) = (LSpan‘𝐶)
10 hdmap14lem8.p . . 3 𝑃 = (Scalar‘𝐶)
11 hdmap14lem8.a . . 3 𝐴 = (Base‘𝑃)
12 hdmap14lem8.s . . 3 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmap14lem8.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
141, 2, 13dvhlmod 39124 . . . 4 (𝜑𝑈 ∈ LMod)
15 hdmap14lem8.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3899 . . . 4 (𝜑𝑋𝑉)
17 hdmap14lem8.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1817eldifad 3899 . . . 4 (𝜑𝑌𝑉)
19 hdmap14lem8.q . . . . 5 + = (+g𝑈)
203, 19lmodvacl 20137 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
2114, 16, 18, 20syl3anc 1370 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
22 hdmap14lem8.f . . 3 (𝜑𝐹𝐵)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21, 22hdmap14lem2a 39881 . 2 (𝜑 → ∃𝑔𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌))))
24 hdmap14lem8.o . . . 4 0 = (0g𝑈)
25 hdmap14lem8.n . . . 4 𝑁 = (LSpan‘𝑈)
26 hdmap14lem8.d . . . 4 = (+g𝐶)
27133ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28153ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29173ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
30223ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → 𝐹𝐵)
31 hdmap14lem8.g . . . . 5 (𝜑𝐺𝐴)
32313ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → 𝐺𝐴)
33 hdmap14lem8.i . . . . 5 (𝜑𝐼𝐴)
34333ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → 𝐼𝐴)
35 hdmap14lem8.xx . . . . 5 (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
36353ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
37 hdmap14lem8.yy . . . . 5 (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 (𝑆𝑌)))
38373ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑌)) = (𝐼 (𝑆𝑌)))
39 hdmap14lem8.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40393ad2ant1 1132 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
41 simp2 1136 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → 𝑔𝐴)
42 simp3 1137 . . . 4 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌))))
431, 2, 3, 19, 4, 24, 25, 5, 6, 7, 26, 8, 10, 11, 12, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42hdmap14lem9 39890 . . 3 ((𝜑𝑔𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌)))) → 𝐺 = 𝐼)
4443rexlimdv3a 3215 . 2 (𝜑 → (∃𝑔𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 (𝑆‘(𝑋 + 𝑌))) → 𝐺 = 𝐼))
4523, 44mpd 15 1 (𝜑𝐺 = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  LModclmod 20123  LSpanclspn 20233  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  LCDualclcd 39600  HDMapchdma 39806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409  df-lcdual 39601  df-mapd 39639  df-hvmap 39771  df-hdmap1 39807  df-hdmap 39808
This theorem is referenced by:  hdmap14lem11  39892
  Copyright terms: Public domain W3C validator