| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem10 | Structured version Visualization version GIF version | ||
| Description: Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmap14lem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap14lem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap14lem8.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap14lem8.q | ⊢ + = (+g‘𝑈) |
| hdmap14lem8.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmap14lem8.o | ⊢ 0 = (0g‘𝑈) |
| hdmap14lem8.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap14lem8.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmap14lem8.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmap14lem8.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap14lem8.d | ⊢ ✚ = (+g‘𝐶) |
| hdmap14lem8.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
| hdmap14lem8.p | ⊢ 𝑃 = (Scalar‘𝐶) |
| hdmap14lem8.a | ⊢ 𝐴 = (Base‘𝑃) |
| hdmap14lem8.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmap14lem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap14lem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| hdmap14lem8.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
| hdmap14lem8.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
| hdmap14lem8.xx | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| hdmap14lem8.yy | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| hdmap14lem8.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| hdmap14lem10 | ⊢ (𝜑 → 𝐺 = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap14lem8.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap14lem8.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap14lem8.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap14lem8.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 5 | hdmap14lem8.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 6 | hdmap14lem8.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | hdmap14lem8.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap14lem8.e | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
| 9 | eqid 2735 | . . 3 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
| 10 | hdmap14lem8.p | . . 3 ⊢ 𝑃 = (Scalar‘𝐶) | |
| 11 | hdmap14lem8.a | . . 3 ⊢ 𝐴 = (Base‘𝑃) | |
| 12 | hdmap14lem8.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 13 | hdmap14lem8.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 14 | 1, 2, 13 | dvhlmod 41129 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 15 | hdmap14lem8.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 16 | 15 | eldifad 3938 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 17 | hdmap14lem8.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 18 | 17 | eldifad 3938 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 19 | hdmap14lem8.q | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 20 | 3, 19 | lmodvacl 20832 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 21 | 14, 16, 18, 20 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
| 22 | hdmap14lem8.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21, 22 | hdmap14lem2a 41886 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) |
| 24 | hdmap14lem8.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 25 | hdmap14lem8.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 26 | hdmap14lem8.d | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 27 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 28 | 15 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 29 | 17 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 30 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐹 ∈ 𝐵) |
| 31 | hdmap14lem8.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
| 32 | 31 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐺 ∈ 𝐴) |
| 33 | hdmap14lem8.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐴) | |
| 34 | 33 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐼 ∈ 𝐴) |
| 35 | hdmap14lem8.xx | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
| 36 | 35 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| 37 | hdmap14lem8.yy | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) | |
| 38 | 37 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| 39 | hdmap14lem8.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 40 | 39 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑔 ∈ 𝐴) | |
| 42 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) | |
| 43 | 1, 2, 3, 19, 4, 24, 25, 5, 6, 7, 26, 8, 10, 11, 12, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42 | hdmap14lem9 41895 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐺 = 𝐼) |
| 44 | 43 | rexlimdv3a 3145 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌))) → 𝐺 = 𝐼)) |
| 45 | 23, 44 | mpd 15 | 1 ⊢ (𝜑 → 𝐺 = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∖ cdif 3923 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Scalarcsca 17274 ·𝑠 cvsca 17275 0gc0g 17453 LModclmod 20817 LSpanclspn 20928 HLchlt 39368 LHypclh 40003 DVecHcdvh 41097 LCDualclcd 41605 HDMapchdma 41811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-0g 17455 df-mre 17598 df-mrc 17599 df-acs 17601 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-oppg 19329 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-nzr 20473 df-rlreg 20654 df-domn 20655 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-lshyp 38995 df-lcv 39037 df-lfl 39076 df-lkr 39104 df-ldual 39142 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 df-lines 39520 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-tgrp 40762 df-tendo 40774 df-edring 40776 df-dveca 41022 df-disoa 41048 df-dvech 41098 df-dib 41158 df-dic 41192 df-dih 41248 df-doch 41367 df-djh 41414 df-lcdual 41606 df-mapd 41644 df-hvmap 41776 df-hdmap1 41812 df-hdmap 41813 |
| This theorem is referenced by: hdmap14lem11 41897 |
| Copyright terms: Public domain | W3C validator |