Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem10 | Structured version Visualization version GIF version |
Description: Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem8.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem8.q | ⊢ + = (+g‘𝑈) |
hdmap14lem8.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem8.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem8.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap14lem8.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem8.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem8.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem8.d | ⊢ ✚ = (+g‘𝐶) |
hdmap14lem8.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem8.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem8.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem8.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem8.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem8.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
hdmap14lem8.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
hdmap14lem8.xx | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
hdmap14lem8.yy | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
hdmap14lem8.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
hdmap14lem10 | ⊢ (𝜑 → 𝐺 = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem8.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem8.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem8.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem8.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hdmap14lem8.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmap14lem8.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hdmap14lem8.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap14lem8.e | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | eqid 2758 | . . 3 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
10 | hdmap14lem8.p | . . 3 ⊢ 𝑃 = (Scalar‘𝐶) | |
11 | hdmap14lem8.a | . . 3 ⊢ 𝐴 = (Base‘𝑃) | |
12 | hdmap14lem8.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
13 | hdmap14lem8.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | 1, 2, 13 | dvhlmod 38708 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
15 | hdmap14lem8.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | eldifad 3870 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
17 | hdmap14lem8.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
18 | 17 | eldifad 3870 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
19 | hdmap14lem8.q | . . . . 5 ⊢ + = (+g‘𝑈) | |
20 | 3, 19 | lmodvacl 19716 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
21 | 14, 16, 18, 20 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
22 | hdmap14lem8.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21, 22 | hdmap14lem2a 39465 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) |
24 | hdmap14lem8.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
25 | hdmap14lem8.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
26 | hdmap14lem8.d | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
27 | 13 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | 15 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
29 | 17 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
30 | 22 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐹 ∈ 𝐵) |
31 | hdmap14lem8.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
32 | 31 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐺 ∈ 𝐴) |
33 | hdmap14lem8.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐴) | |
34 | 33 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐼 ∈ 𝐴) |
35 | hdmap14lem8.xx | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
36 | 35 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
37 | hdmap14lem8.yy | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) | |
38 | 37 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
39 | hdmap14lem8.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
40 | 39 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
41 | simp2 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑔 ∈ 𝐴) | |
42 | simp3 1135 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) | |
43 | 1, 2, 3, 19, 4, 24, 25, 5, 6, 7, 26, 8, 10, 11, 12, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42 | hdmap14lem9 39474 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐺 = 𝐼) |
44 | 43 | rexlimdv3a 3210 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌))) → 𝐺 = 𝐼)) |
45 | 23, 44 | mpd 15 | 1 ⊢ (𝜑 → 𝐺 = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 ∖ cdif 3855 {csn 4522 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 Scalarcsca 16626 ·𝑠 cvsca 16627 0gc0g 16771 LModclmod 19702 LSpanclspn 19811 HLchlt 36948 LHypclh 37582 DVecHcdvh 38676 LCDualclcd 39184 HDMapchdma 39390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-riotaBAD 36551 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-ot 4531 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-undef 7949 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-0g 16773 df-mre 16915 df-mrc 16916 df-acs 16918 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-p1 17716 df-lat 17722 df-clat 17784 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-cntz 18514 df-oppg 18541 df-lsm 18828 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-dvr 19504 df-drng 19572 df-lmod 19704 df-lss 19772 df-lsp 19812 df-lvec 19943 df-lsatoms 36574 df-lshyp 36575 df-lcv 36617 df-lfl 36656 df-lkr 36684 df-ldual 36722 df-oposet 36774 df-ol 36776 df-oml 36777 df-covers 36864 df-ats 36865 df-atl 36896 df-cvlat 36920 df-hlat 36949 df-llines 37096 df-lplanes 37097 df-lvols 37098 df-lines 37099 df-psubsp 37101 df-pmap 37102 df-padd 37394 df-lhyp 37586 df-laut 37587 df-ldil 37702 df-ltrn 37703 df-trl 37757 df-tgrp 38341 df-tendo 38353 df-edring 38355 df-dveca 38601 df-disoa 38627 df-dvech 38677 df-dib 38737 df-dic 38771 df-dih 38827 df-doch 38946 df-djh 38993 df-lcdual 39185 df-mapd 39223 df-hvmap 39355 df-hdmap1 39391 df-hdmap 39392 |
This theorem is referenced by: hdmap14lem11 39476 |
Copyright terms: Public domain | W3C validator |