| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem10 | Structured version Visualization version GIF version | ||
| Description: Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmap14lem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap14lem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap14lem8.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap14lem8.q | ⊢ + = (+g‘𝑈) |
| hdmap14lem8.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmap14lem8.o | ⊢ 0 = (0g‘𝑈) |
| hdmap14lem8.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap14lem8.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmap14lem8.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmap14lem8.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap14lem8.d | ⊢ ✚ = (+g‘𝐶) |
| hdmap14lem8.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
| hdmap14lem8.p | ⊢ 𝑃 = (Scalar‘𝐶) |
| hdmap14lem8.a | ⊢ 𝐴 = (Base‘𝑃) |
| hdmap14lem8.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmap14lem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap14lem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| hdmap14lem8.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
| hdmap14lem8.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
| hdmap14lem8.xx | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| hdmap14lem8.yy | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| hdmap14lem8.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| hdmap14lem10 | ⊢ (𝜑 → 𝐺 = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap14lem8.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap14lem8.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap14lem8.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap14lem8.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 5 | hdmap14lem8.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 6 | hdmap14lem8.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | hdmap14lem8.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap14lem8.e | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
| 9 | eqid 2729 | . . 3 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
| 10 | hdmap14lem8.p | . . 3 ⊢ 𝑃 = (Scalar‘𝐶) | |
| 11 | hdmap14lem8.a | . . 3 ⊢ 𝐴 = (Base‘𝑃) | |
| 12 | hdmap14lem8.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 13 | hdmap14lem8.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 14 | 1, 2, 13 | dvhlmod 41077 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 15 | hdmap14lem8.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 16 | 15 | eldifad 3923 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 17 | hdmap14lem8.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 18 | 17 | eldifad 3923 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 19 | hdmap14lem8.q | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 20 | 3, 19 | lmodvacl 20757 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 21 | 14, 16, 18, 20 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
| 22 | hdmap14lem8.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 21, 22 | hdmap14lem2a 41834 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) |
| 24 | hdmap14lem8.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 25 | hdmap14lem8.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 26 | hdmap14lem8.d | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 27 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 28 | 15 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 29 | 17 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 30 | 22 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐹 ∈ 𝐵) |
| 31 | hdmap14lem8.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
| 32 | 31 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐺 ∈ 𝐴) |
| 33 | hdmap14lem8.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐴) | |
| 34 | 33 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐼 ∈ 𝐴) |
| 35 | hdmap14lem8.xx | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
| 36 | 35 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| 37 | hdmap14lem8.yy | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) | |
| 38 | 37 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| 39 | hdmap14lem8.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 40 | 39 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝑔 ∈ 𝐴) | |
| 42 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) | |
| 43 | 1, 2, 3, 19, 4, 24, 25, 5, 6, 7, 26, 8, 10, 11, 12, 27, 28, 29, 30, 32, 34, 36, 38, 40, 41, 42 | hdmap14lem9 41843 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌)))) → 𝐺 = 𝐼) |
| 44 | 43 | rexlimdv3a 3138 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑔 ∙ (𝑆‘(𝑋 + 𝑌))) → 𝐺 = 𝐼)) |
| 45 | 23, 44 | mpd 15 | 1 ⊢ (𝜑 → 𝐺 = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3908 {csn 4585 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 LModclmod 20742 LSpanclspn 20853 HLchlt 39316 LHypclh 39951 DVecHcdvh 41045 LCDualclcd 41553 HDMapchdma 41759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-oppg 19254 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lsatoms 38942 df-lshyp 38943 df-lcv 38985 df-lfl 39024 df-lkr 39052 df-ldual 39090 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tgrp 40710 df-tendo 40722 df-edring 40724 df-dveca 40970 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 df-doch 41315 df-djh 41362 df-lcdual 41554 df-mapd 41592 df-hvmap 41724 df-hdmap1 41760 df-hdmap 41761 |
| This theorem is referenced by: hdmap14lem11 41845 |
| Copyright terms: Public domain | W3C validator |