Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem19 Structured version   Visualization version   GIF version

Theorem lcfrlem19 38696
Description: Lemma for lcfr 38720. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem19 (𝜑 → (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))

Proof of Theorem lcfrlem19
StepHypRef Expression
1 lcfrlem17.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.o . . . 4 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem17.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . 4 𝑉 = (Base‘𝑈)
5 lcfrlem17.z . . . 4 0 = (0g𝑈)
6 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 lcfrlem17.p . . . . 5 + = (+g𝑈)
8 lcfrlem17.n . . . . 5 𝑁 = (LSpan‘𝑈)
9 lcfrlem17.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
10 lcfrlem17.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
131, 2, 3, 4, 7, 5, 8, 9, 6, 10, 11, 12lcfrlem17 38694 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 13dochnel 38528 . . 3 (𝜑 → ¬ (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
151, 3, 6dvhlmod 38245 . . . . 5 (𝜑𝑈 ∈ LMod)
1615adantr 483 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → 𝑈 ∈ LMod)
1710eldifad 3947 . . . . . . . 8 (𝜑𝑋𝑉)
1811eldifad 3947 . . . . . . . 8 (𝜑𝑌𝑉)
194, 7lmodvacl 19647 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
2015, 17, 18, 19syl3anc 1367 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
2120snssd 4741 . . . . . 6 (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉)
22 eqid 2821 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 3, 4, 22, 2dochlss 38489 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
246, 21, 23syl2anc 586 . . . . 5 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
2524adantr 483 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
26 simpr 487 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
277, 22lssvacl 19725 . . . 4 (((𝑈 ∈ LMod ∧ ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
2816, 25, 26, 27syl21anc 835 . . 3 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
2914, 28mtand 814 . 2 (𝜑 → ¬ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
30 ianor 978 . 2 (¬ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})) ↔ (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
3129, 30sylib 220 1 (𝜑 → (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  cdif 3932  wss 3935  {csn 4566  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  0gc0g 16712  LModclmod 19633  LSubSpclss 19702  LSpanclspn 19742  LSAtomsclsa 36109  HLchlt 36485  LHypclh 37119  DVecHcdvh 38213  ocHcoch 38482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-riotaBAD 36088
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-undef 7938  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-0g 16714  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-cntz 18446  df-lsm 18760  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19503  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lvec 19874  df-lsatoms 36111  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-llines 36633  df-lplanes 36634  df-lvols 36635  df-lines 36636  df-psubsp 36638  df-pmap 36639  df-padd 36931  df-lhyp 37123  df-laut 37124  df-ldil 37239  df-ltrn 37240  df-trl 37294  df-tendo 37890  df-edring 37892  df-disoa 38164  df-dvech 38214  df-dib 38274  df-dic 38308  df-dih 38364  df-doch 38483
This theorem is referenced by:  lcfrlem21  38698
  Copyright terms: Public domain W3C validator