Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem19 Structured version   Visualization version   GIF version

Theorem lcfrlem19 38691
Description: Lemma for lcfr 38715. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem19 (𝜑 → (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))

Proof of Theorem lcfrlem19
StepHypRef Expression
1 lcfrlem17.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.o . . . 4 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem17.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . 4 𝑉 = (Base‘𝑈)
5 lcfrlem17.z . . . 4 0 = (0g𝑈)
6 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 lcfrlem17.p . . . . 5 + = (+g𝑈)
8 lcfrlem17.n . . . . 5 𝑁 = (LSpan‘𝑈)
9 lcfrlem17.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
10 lcfrlem17.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
131, 2, 3, 4, 7, 5, 8, 9, 6, 10, 11, 12lcfrlem17 38689 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 13dochnel 38523 . . 3 (𝜑 → ¬ (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
151, 3, 6dvhlmod 38240 . . . . 5 (𝜑𝑈 ∈ LMod)
1615adantr 483 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → 𝑈 ∈ LMod)
1710eldifad 3947 . . . . . . . 8 (𝜑𝑋𝑉)
1811eldifad 3947 . . . . . . . 8 (𝜑𝑌𝑉)
194, 7lmodvacl 19642 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
2015, 17, 18, 19syl3anc 1367 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
2120snssd 4735 . . . . . 6 (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉)
22 eqid 2821 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 3, 4, 22, 2dochlss 38484 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
246, 21, 23syl2anc 586 . . . . 5 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
2524adantr 483 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
26 simpr 487 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
277, 22lssvacl 19720 . . . 4 (((𝑈 ∈ LMod ∧ ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
2816, 25, 26, 27syl21anc 835 . . 3 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
2914, 28mtand 814 . 2 (𝜑 → ¬ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
30 ianor 978 . 2 (¬ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})) ↔ (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
3129, 30sylib 220 1 (𝜑 → (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  cdif 3932  wss 3935  {csn 4560  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  0gc0g 16707  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  LSAtomsclsa 36104  HLchlt 36480  LHypclh 37114  DVecHcdvh 38208  ocHcoch 38477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-0g 16709  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-lsatoms 36106  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-tendo 37885  df-edring 37887  df-disoa 38159  df-dvech 38209  df-dib 38269  df-dic 38303  df-dih 38359  df-doch 38478
This theorem is referenced by:  lcfrlem21  38693
  Copyright terms: Public domain W3C validator