Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem19 Structured version   Visualization version   GIF version

Theorem lcfrlem19 39575
Description: Lemma for lcfr 39599. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem19 (𝜑 → (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))

Proof of Theorem lcfrlem19
StepHypRef Expression
1 lcfrlem17.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.o . . . 4 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem17.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . 4 𝑉 = (Base‘𝑈)
5 lcfrlem17.z . . . 4 0 = (0g𝑈)
6 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 lcfrlem17.p . . . . 5 + = (+g𝑈)
8 lcfrlem17.n . . . . 5 𝑁 = (LSpan‘𝑈)
9 lcfrlem17.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
10 lcfrlem17.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
131, 2, 3, 4, 7, 5, 8, 9, 6, 10, 11, 12lcfrlem17 39573 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 13dochnel 39407 . . 3 (𝜑 → ¬ (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
151, 3, 6dvhlmod 39124 . . . . 5 (𝜑𝑈 ∈ LMod)
1615adantr 481 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → 𝑈 ∈ LMod)
1710eldifad 3899 . . . . . . . 8 (𝜑𝑋𝑉)
1811eldifad 3899 . . . . . . . 8 (𝜑𝑌𝑉)
194, 7lmodvacl 20137 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
2015, 17, 18, 19syl3anc 1370 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
2120snssd 4742 . . . . . 6 (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉)
22 eqid 2738 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 3, 4, 22, 2dochlss 39368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
246, 21, 23syl2anc 584 . . . . 5 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
2524adantr 481 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
26 simpr 485 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
277, 22lssvacl 20216 . . . 4 (((𝑈 ∈ LMod ∧ ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
2816, 25, 26, 27syl21anc 835 . . 3 ((𝜑 ∧ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)}))) → (𝑋 + 𝑌) ∈ ( ‘{(𝑋 + 𝑌)}))
2914, 28mtand 813 . 2 (𝜑 → ¬ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
30 ianor 979 . 2 (¬ (𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∧ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})) ↔ (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
3129, 30sylib 217 1 (𝜑 → (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cdif 3884  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LSAtomsclsa 36988  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  ocHcoch 39361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769  df-edring 38771  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362
This theorem is referenced by:  lcfrlem21  39577
  Copyright terms: Public domain W3C validator