![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspabs2 | Structured version Visualization version GIF version |
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
Ref | Expression |
---|---|
lspabs2.v | ⊢ 𝑉 = (Base‘𝑊) |
lspabs2.p | ⊢ + = (+g‘𝑊) |
lspabs2.o | ⊢ 0 = (0g‘𝑊) |
lspabs2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspabs2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspabs2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspabs2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lspabs2.e | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
Ref | Expression |
---|---|
lspabs2 | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspabs2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lveclmod 21078 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | lspabs2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | lspabs2.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lspabs2.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
7 | 5, 6 | lspsnsubg 20951 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
8 | 3, 4, 7 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
9 | lspabs2.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
10 | 9 | eldifad 3959 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
11 | 5, 6 | lspsnsubg 20951 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
12 | 3, 10, 11 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
13 | eqid 2726 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
14 | 13 | lsmub2 19650 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
15 | 8, 12, 14 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
16 | lspabs2.e | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) | |
17 | 16 | oveq2d 7430 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) |
18 | 13 | lsmidm 19655 | . . . . . 6 ⊢ ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
19 | 8, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
20 | lspabs2.p | . . . . . . 7 ⊢ + = (+g‘𝑊) | |
21 | 5, 20, 6, 3, 4, 10 | lspprabs 21067 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌})) |
22 | 5, 20 | lmodvacl 20845 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
23 | 3, 4, 10, 22 | syl3anc 1368 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
24 | 5, 6, 13, 3, 4, 23 | lsmpr 21061 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) |
25 | 5, 6, 13, 3, 4, 10 | lsmpr 21061 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
26 | 21, 24, 25 | 3eqtr3d 2774 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
27 | 17, 19, 26 | 3eqtr3rd 2775 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋})) |
28 | 15, 27 | sseqtrd 4020 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋})) |
29 | lspabs2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
30 | 5, 29, 6, 1, 9, 4 | lspsncmp 21091 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑌}) = (𝑁‘{𝑋}))) |
31 | 28, 30 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) |
32 | 31 | eqcomd 2732 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 {csn 4624 {cpr 4626 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 +gcplusg 17259 0gc0g 17447 SubGrpcsubg 19108 LSSumclsm 19626 LModclmod 20830 LSpanclspn 20942 LVecclvec 21074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-3 12320 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-0g 17449 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19628 df-cmn 19774 df-abl 19775 df-mgp 20112 df-rng 20130 df-ur 20159 df-ring 20212 df-oppr 20310 df-dvdsr 20333 df-unit 20334 df-invr 20364 df-drng 20703 df-lmod 20832 df-lss 20903 df-lsp 20943 df-lvec 21075 |
This theorem is referenced by: lspindp3 21111 |
Copyright terms: Public domain | W3C validator |