MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspabs2 Structured version   Visualization version   GIF version

Theorem lspabs2 20581
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.)
Hypotheses
Ref Expression
lspabs2.v 𝑉 = (Base‘𝑊)
lspabs2.p + = (+g𝑊)
lspabs2.o 0 = (0g𝑊)
lspabs2.n 𝑁 = (LSpan‘𝑊)
lspabs2.w (𝜑𝑊 ∈ LVec)
lspabs2.x (𝜑𝑋𝑉)
lspabs2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lspabs2.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
Assertion
Ref Expression
lspabs2 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))

Proof of Theorem lspabs2
StepHypRef Expression
1 lspabs2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
2 lveclmod 20567 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
4 lspabs2.x . . . . . 6 (𝜑𝑋𝑉)
5 lspabs2.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 lspabs2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
75, 6lspsnsubg 20441 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
83, 4, 7syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
9 lspabs2.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3922 . . . . . 6 (𝜑𝑌𝑉)
115, 6lspsnsubg 20441 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
123, 10, 11syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
13 eqid 2736 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1413lsmub2 19440 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
158, 12, 14syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
16 lspabs2.e . . . . . 6 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
1716oveq2d 7373 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
1813lsmidm 19445 . . . . . 6 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
198, 18syl 17 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
20 lspabs2.p . . . . . . 7 + = (+g𝑊)
215, 20, 6, 3, 4, 10lspprabs 20556 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
225, 20lmodvacl 20336 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
233, 4, 10, 22syl3anc 1371 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
245, 6, 13, 3, 4, 23lsmpr 20550 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
255, 6, 13, 3, 4, 10lsmpr 20550 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2621, 24, 253eqtr3d 2784 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2717, 19, 263eqtr3rd 2785 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋}))
2815, 27sseqtrd 3984 . . 3 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}))
29 lspabs2.o . . . 4 0 = (0g𝑊)
305, 29, 6, 1, 9, 4lspsncmp 20577 . . 3 (𝜑 → ((𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3128, 30mpbid 231 . 2 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3231eqcomd 2742 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cdif 3907  wss 3910  {csn 4586  {cpr 4588  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  0gc0g 17321  SubGrpcsubg 18922  LSSumclsm 19416  LModclmod 20322  LSpanclspn 20432  LVecclvec 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564
This theorem is referenced by:  lspindp3  20597
  Copyright terms: Public domain W3C validator