MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspabs2 Structured version   Visualization version   GIF version

Theorem lspabs2 19895
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.)
Hypotheses
Ref Expression
lspabs2.v 𝑉 = (Base‘𝑊)
lspabs2.p + = (+g𝑊)
lspabs2.o 0 = (0g𝑊)
lspabs2.n 𝑁 = (LSpan‘𝑊)
lspabs2.w (𝜑𝑊 ∈ LVec)
lspabs2.x (𝜑𝑋𝑉)
lspabs2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lspabs2.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
Assertion
Ref Expression
lspabs2 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))

Proof of Theorem lspabs2
StepHypRef Expression
1 lspabs2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
2 lveclmod 19881 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
4 lspabs2.x . . . . . 6 (𝜑𝑋𝑉)
5 lspabs2.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 lspabs2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
75, 6lspsnsubg 19755 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
83, 4, 7syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
9 lspabs2.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3932 . . . . . 6 (𝜑𝑌𝑉)
115, 6lspsnsubg 19755 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
123, 10, 11syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
13 eqid 2824 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
1413lsmub2 18786 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
158, 12, 14syl2anc 587 . . . 4 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
16 lspabs2.e . . . . . 6 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
1716oveq2d 7166 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
1813lsmidm 18791 . . . . . 6 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
198, 18syl 17 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
20 lspabs2.p . . . . . . 7 + = (+g𝑊)
215, 20, 6, 3, 4, 10lspprabs 19870 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌}))
225, 20lmodvacl 19651 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
233, 4, 10, 22syl3anc 1368 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
245, 6, 13, 3, 4, 23lsmpr 19864 . . . . . 6 (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
255, 6, 13, 3, 4, 10lsmpr 19864 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2621, 24, 253eqtr3d 2867 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2717, 19, 263eqtr3rd 2868 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋}))
2815, 27sseqtrd 3994 . . 3 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}))
29 lspabs2.o . . . 4 0 = (0g𝑊)
305, 29, 6, 1, 9, 4lspsncmp 19891 . . 3 (𝜑 → ((𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3128, 30mpbid 235 . 2 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3231eqcomd 2830 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cdif 3917  wss 3920  {csn 4551  {cpr 4553  cfv 6344  (class class class)co 7150  Basecbs 16486  +gcplusg 16568  0gc0g 16716  SubGrpcsubg 18276  LSSumclsm 18762  LModclmod 19637  LSpanclspn 19746  LVecclvec 19877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-tpos 7889  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19379  df-dvdsr 19397  df-unit 19398  df-invr 19428  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878
This theorem is referenced by:  lspindp3  19911
  Copyright terms: Public domain W3C validator