![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspabs2 | Structured version Visualization version GIF version |
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
Ref | Expression |
---|---|
lspabs2.v | ⊢ 𝑉 = (Base‘𝑊) |
lspabs2.p | ⊢ + = (+g‘𝑊) |
lspabs2.o | ⊢ 0 = (0g‘𝑊) |
lspabs2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspabs2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspabs2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspabs2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lspabs2.e | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
Ref | Expression |
---|---|
lspabs2 | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspabs2.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | lveclmod 21128 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | lspabs2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | lspabs2.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lspabs2.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
7 | 5, 6 | lspsnsubg 21001 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
8 | 3, 4, 7 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
9 | lspabs2.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
10 | 9 | eldifad 3988 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
11 | 5, 6 | lspsnsubg 21001 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
12 | 3, 10, 11 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
13 | eqid 2740 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
14 | 13 | lsmub2 19700 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
15 | 8, 12, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
16 | lspabs2.e | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) | |
17 | 16 | oveq2d 7464 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) |
18 | 13 | lsmidm 19705 | . . . . . 6 ⊢ ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
19 | 8, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
20 | lspabs2.p | . . . . . . 7 ⊢ + = (+g‘𝑊) | |
21 | 5, 20, 6, 3, 4, 10 | lspprabs 21117 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌})) |
22 | 5, 20 | lmodvacl 20895 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
23 | 3, 4, 10, 22 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
24 | 5, 6, 13, 3, 4, 23 | lsmpr 21111 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) |
25 | 5, 6, 13, 3, 4, 10 | lsmpr 21111 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
26 | 21, 24, 25 | 3eqtr3d 2788 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
27 | 17, 19, 26 | 3eqtr3rd 2789 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋})) |
28 | 15, 27 | sseqtrd 4049 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋})) |
29 | lspabs2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
30 | 5, 29, 6, 1, 9, 4 | lspsncmp 21141 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑌}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑌}) = (𝑁‘{𝑋}))) |
31 | 28, 30 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) |
32 | 31 | eqcomd 2746 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 {cpr 4650 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 SubGrpcsubg 19160 LSSumclsm 19676 LModclmod 20880 LSpanclspn 20992 LVecclvec 21124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 |
This theorem is referenced by: lspindp3 21161 |
Copyright terms: Public domain | W3C validator |