![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspabs2 | Structured version Visualization version GIF version |
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
Ref | Expression |
---|---|
lspabs2.v | β’ π = (Baseβπ) |
lspabs2.p | β’ + = (+gβπ) |
lspabs2.o | β’ 0 = (0gβπ) |
lspabs2.n | β’ π = (LSpanβπ) |
lspabs2.w | β’ (π β π β LVec) |
lspabs2.x | β’ (π β π β π) |
lspabs2.y | β’ (π β π β (π β { 0 })) |
lspabs2.e | β’ (π β (πβ{π}) = (πβ{(π + π)})) |
Ref | Expression |
---|---|
lspabs2 | β’ (π β (πβ{π}) = (πβ{π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspabs2.w | . . . . . . 7 β’ (π β π β LVec) | |
2 | lveclmod 20951 | . . . . . . 7 β’ (π β LVec β π β LMod) | |
3 | 1, 2 | syl 17 | . . . . . 6 β’ (π β π β LMod) |
4 | lspabs2.x | . . . . . 6 β’ (π β π β π) | |
5 | lspabs2.v | . . . . . . 7 β’ π = (Baseβπ) | |
6 | lspabs2.n | . . . . . . 7 β’ π = (LSpanβπ) | |
7 | 5, 6 | lspsnsubg 20824 | . . . . . 6 β’ ((π β LMod β§ π β π) β (πβ{π}) β (SubGrpβπ)) |
8 | 3, 4, 7 | syl2anc 583 | . . . . 5 β’ (π β (πβ{π}) β (SubGrpβπ)) |
9 | lspabs2.y | . . . . . . 7 β’ (π β π β (π β { 0 })) | |
10 | 9 | eldifad 3955 | . . . . . 6 β’ (π β π β π) |
11 | 5, 6 | lspsnsubg 20824 | . . . . . 6 β’ ((π β LMod β§ π β π) β (πβ{π}) β (SubGrpβπ)) |
12 | 3, 10, 11 | syl2anc 583 | . . . . 5 β’ (π β (πβ{π}) β (SubGrpβπ)) |
13 | eqid 2726 | . . . . . 6 β’ (LSSumβπ) = (LSSumβπ) | |
14 | 13 | lsmub2 19575 | . . . . 5 β’ (((πβ{π}) β (SubGrpβπ) β§ (πβ{π}) β (SubGrpβπ)) β (πβ{π}) β ((πβ{π})(LSSumβπ)(πβ{π}))) |
15 | 8, 12, 14 | syl2anc 583 | . . . 4 β’ (π β (πβ{π}) β ((πβ{π})(LSSumβπ)(πβ{π}))) |
16 | lspabs2.e | . . . . . 6 β’ (π β (πβ{π}) = (πβ{(π + π)})) | |
17 | 16 | oveq2d 7420 | . . . . 5 β’ (π β ((πβ{π})(LSSumβπ)(πβ{π})) = ((πβ{π})(LSSumβπ)(πβ{(π + π)}))) |
18 | 13 | lsmidm 19580 | . . . . . 6 β’ ((πβ{π}) β (SubGrpβπ) β ((πβ{π})(LSSumβπ)(πβ{π})) = (πβ{π})) |
19 | 8, 18 | syl 17 | . . . . 5 β’ (π β ((πβ{π})(LSSumβπ)(πβ{π})) = (πβ{π})) |
20 | lspabs2.p | . . . . . . 7 β’ + = (+gβπ) | |
21 | 5, 20, 6, 3, 4, 10 | lspprabs 20940 | . . . . . 6 β’ (π β (πβ{π, (π + π)}) = (πβ{π, π})) |
22 | 5, 20 | lmodvacl 20718 | . . . . . . . 8 β’ ((π β LMod β§ π β π β§ π β π) β (π + π) β π) |
23 | 3, 4, 10, 22 | syl3anc 1368 | . . . . . . 7 β’ (π β (π + π) β π) |
24 | 5, 6, 13, 3, 4, 23 | lsmpr 20934 | . . . . . 6 β’ (π β (πβ{π, (π + π)}) = ((πβ{π})(LSSumβπ)(πβ{(π + π)}))) |
25 | 5, 6, 13, 3, 4, 10 | lsmpr 20934 | . . . . . 6 β’ (π β (πβ{π, π}) = ((πβ{π})(LSSumβπ)(πβ{π}))) |
26 | 21, 24, 25 | 3eqtr3d 2774 | . . . . 5 β’ (π β ((πβ{π})(LSSumβπ)(πβ{(π + π)})) = ((πβ{π})(LSSumβπ)(πβ{π}))) |
27 | 17, 19, 26 | 3eqtr3rd 2775 | . . . 4 β’ (π β ((πβ{π})(LSSumβπ)(πβ{π})) = (πβ{π})) |
28 | 15, 27 | sseqtrd 4017 | . . 3 β’ (π β (πβ{π}) β (πβ{π})) |
29 | lspabs2.o | . . . 4 β’ 0 = (0gβπ) | |
30 | 5, 29, 6, 1, 9, 4 | lspsncmp 20964 | . . 3 β’ (π β ((πβ{π}) β (πβ{π}) β (πβ{π}) = (πβ{π}))) |
31 | 28, 30 | mpbid 231 | . 2 β’ (π β (πβ{π}) = (πβ{π})) |
32 | 31 | eqcomd 2732 | 1 β’ (π β (πβ{π}) = (πβ{π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β cdif 3940 β wss 3943 {csn 4623 {cpr 4625 βcfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 0gc0g 17391 SubGrpcsubg 19044 LSSumclsm 19551 LModclmod 20703 LSpanclspn 20815 LVecclvec 20947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-grp 18863 df-minusg 18864 df-sbg 18865 df-subg 19047 df-cntz 19230 df-lsm 19553 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-drng 20586 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lvec 20948 |
This theorem is referenced by: lspindp3 20984 |
Copyright terms: Public domain | W3C validator |