Proof of Theorem lcfrlem23
| Step | Hyp | Ref
| Expression |
| 1 | | lcfrlem22.b |
. . . . . . 7
⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| 2 | 1 | fveq2i 6909 |
. . . . . 6
⊢ ( ⊥
‘𝐵) = ( ⊥
‘((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
| 3 | | lcfrlem17.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
| 4 | | eqid 2737 |
. . . . . . . 8
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
| 5 | | lcfrlem17.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 6 | | lcfrlem17.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑈) |
| 7 | | lcfrlem17.o |
. . . . . . . 8
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
| 8 | | eqid 2737 |
. . . . . . . 8
⊢
((joinH‘𝐾)‘𝑊) = ((joinH‘𝐾)‘𝑊) |
| 9 | | lcfrlem17.k |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 10 | | lcfrlem17.n |
. . . . . . . . 9
⊢ 𝑁 = (LSpan‘𝑈) |
| 11 | | lcfrlem17.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 12 | 11 | eldifad 3963 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 13 | | lcfrlem17.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 14 | 13 | eldifad 3963 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 15 | 3, 5, 6, 10, 4, 9,
12, 14 | dihprrn 41428 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 16 | 3, 5, 9 | dvhlmod 41112 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 17 | | lcfrlem17.p |
. . . . . . . . . . . 12
⊢ + =
(+g‘𝑈) |
| 18 | 6, 17 | lmodvacl 20873 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 19 | 16, 12, 14, 18 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
| 20 | 19 | snssd 4809 |
. . . . . . . . 9
⊢ (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉) |
| 21 | 3, 4, 5, 6, 7 | dochcl 41355 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 22 | 9, 20, 21 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 23 | 3, 4, 5, 6, 7, 8, 9, 15, 22 | dochdmm1 41412 |
. . . . . . 7
⊢ (𝜑 → ( ⊥ ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) = (( ⊥ ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)( ⊥ ‘( ⊥
‘{(𝑋 + 𝑌)})))) |
| 24 | 3, 5, 7, 6, 10, 9,
19 | dochocsn 41383 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
| 25 | 24 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → (( ⊥ ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)( ⊥ ‘( ⊥
‘{(𝑋 + 𝑌)}))) = (( ⊥ ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)(𝑁‘{(𝑋 + 𝑌)}))) |
| 26 | | lcfrlem23.s |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝑈) |
| 27 | | prssi 4821 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) |
| 28 | 12, 14, 27 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
| 29 | 6, 10 | lspssv 20981 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) |
| 30 | 16, 28, 29 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) |
| 31 | 3, 4, 5, 6, 7 | dochcl 41355 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 32 | 9, 30, 31 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 33 | 3, 5, 6, 26, 10, 4, 8, 9, 32,
19 | dihjat1 41431 |
. . . . . . 7
⊢ (𝜑 → (( ⊥ ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = (( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊕ (𝑁‘{(𝑋 + 𝑌)}))) |
| 34 | 23, 25, 33 | 3eqtrd 2781 |
. . . . . 6
⊢ (𝜑 → ( ⊥ ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) = (( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊕ (𝑁‘{(𝑋 + 𝑌)}))) |
| 35 | 2, 34 | eqtrid 2789 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘𝐵) = (( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊕ (𝑁‘{(𝑋 + 𝑌)}))) |
| 36 | 35 | ineq2d 4220 |
. . . 4
⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘𝐵)) = (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ (( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊕ (𝑁‘{(𝑋 + 𝑌)})))) |
| 37 | | eqid 2737 |
. . . . . . . 8
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 38 | 37 | lsssssubg 20956 |
. . . . . . 7
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) |
| 39 | 16, 38 | syl 17 |
. . . . . 6
⊢ (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
| 40 | 6, 37, 10 | lspsncl 20975 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 41 | 16, 12, 40 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 42 | 6, 37, 10 | lspsncl 20975 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 43 | 16, 14, 42 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 44 | 37, 26 | lsmcl 21082 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ (LSubSp‘𝑈)) |
| 45 | 16, 41, 43, 44 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ (LSubSp‘𝑈)) |
| 46 | 39, 45 | sseldd 3984 |
. . . . 5
⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ (SubGrp‘𝑈)) |
| 47 | 3, 5, 6, 37, 7 | dochlss 41356 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈)) |
| 48 | 9, 30, 47 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈)) |
| 49 | 39, 48 | sseldd 3984 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈)) |
| 50 | 6, 37, 10 | lspsncl 20975 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
| 51 | 16, 19, 50 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) |
| 52 | 39, 51 | sseldd 3984 |
. . . . 5
⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈)) |
| 53 | 6, 17, 10, 26 | lspsntri 21096 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
| 54 | 16, 12, 14, 53 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
| 55 | 26 | lsmmod2 19694 |
. . . . 5
⊢
(((((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ (SubGrp‘𝑈) ∧ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈)) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ (( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊕ (𝑁‘{(𝑋 + 𝑌)}))) = ((((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊕ (𝑁‘{(𝑋 + 𝑌)}))) |
| 56 | 46, 49, 52, 54, 55 | syl31anc 1375 |
. . . 4
⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ (( ⊥ ‘(𝑁‘{𝑋, 𝑌})) ⊕ (𝑁‘{(𝑋 + 𝑌)}))) = ((((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊕ (𝑁‘{(𝑋 + 𝑌)}))) |
| 57 | 6, 10, 26, 16, 12, 14 | lsmpr 21088 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
| 58 | 57 | ineq1d 4219 |
. . . . . . 7
⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌})))) |
| 59 | 6, 37, 10, 16, 12, 14 | lspprcl 20976 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 60 | | lcfrlem17.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑈) |
| 61 | 3, 5, 37, 60, 7 | dochnoncon 41393 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = { 0 }) |
| 62 | 9, 59, 61 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = { 0 }) |
| 63 | 58, 62 | eqtr3d 2779 |
. . . . . 6
⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) = { 0 }) |
| 64 | 63 | oveq1d 7446 |
. . . . 5
⊢ (𝜑 → ((((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊕ (𝑁‘{(𝑋 + 𝑌)})) = ({ 0 } ⊕ (𝑁‘{(𝑋 + 𝑌)}))) |
| 65 | 60, 26 | lsm02 19690 |
. . . . . 6
⊢ ((𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈) → ({ 0 } ⊕ (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
| 66 | 52, 65 | syl 17 |
. . . . 5
⊢ (𝜑 → ({ 0 } ⊕ (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
| 67 | 64, 66 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → ((((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘(𝑁‘{𝑋, 𝑌}))) ⊕ (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
| 68 | 36, 56, 67 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘𝐵)) = (𝑁‘{(𝑋 + 𝑌)})) |
| 69 | 68 | fveq2d 6910 |
. 2
⊢ (𝜑 → ( ⊥ ‘(((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘𝐵))) = ( ⊥ ‘(𝑁‘{(𝑋 + 𝑌)}))) |
| 70 | 3, 5, 6, 26, 10, 4, 9, 12, 14 | dihsmsnrn 41437 |
. . . 4
⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 71 | | lcfrlem17.a |
. . . . . 6
⊢ 𝐴 = (LSAtoms‘𝑈) |
| 72 | | lcfrlem17.ne |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 73 | 3, 7, 5, 6, 17, 60, 10, 71, 9, 11, 13, 72, 1 | lcfrlem22 41566 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 74 | 6, 71, 16, 73 | lsatssv 38999 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑉) |
| 75 | 3, 4, 5, 6, 7 | dochcl 41355 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐵 ⊆ 𝑉) → ( ⊥ ‘𝐵) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 76 | 9, 74, 75 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ( ⊥ ‘𝐵) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 77 | 3, 4, 5, 6, 7, 8, 9, 70, 76 | dochdmm1 41412 |
. . 3
⊢ (𝜑 → ( ⊥ ‘(((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘𝐵))) = (( ⊥ ‘((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})))((joinH‘𝐾)‘𝑊)( ⊥ ‘( ⊥
‘𝐵)))) |
| 78 | 57 | fveq2d 6910 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ( ⊥ ‘((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})))) |
| 79 | 3, 5, 7, 6, 10, 9,
28 | dochocsp 41381 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘(𝑁‘{𝑋, 𝑌})) = ( ⊥ ‘{𝑋, 𝑌})) |
| 80 | 78, 79 | eqtr3d 2779 |
. . . 4
⊢ (𝜑 → ( ⊥ ‘((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) = ( ⊥ ‘{𝑋, 𝑌})) |
| 81 | 3, 5, 4, 71 | dih1dimat 41332 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 82 | 9, 73, 81 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 83 | 3, 4, 7 | dochoc 41369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘𝐵)) = 𝐵) |
| 84 | 9, 82, 83 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝐵)) = 𝐵) |
| 85 | 80, 84 | oveq12d 7449 |
. . 3
⊢ (𝜑 → (( ⊥ ‘((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})))((joinH‘𝐾)‘𝑊)( ⊥ ‘( ⊥
‘𝐵))) = (( ⊥
‘{𝑋, 𝑌})((joinH‘𝐾)‘𝑊)𝐵)) |
| 86 | 3, 4, 5, 6, 7 | dochcl 41355 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋, 𝑌} ⊆ 𝑉) → ( ⊥ ‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 87 | 9, 28, 86 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ( ⊥ ‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
| 88 | 3, 4, 8, 5, 26, 71, 9, 87, 73 | dihjat2 41433 |
. . 3
⊢ (𝜑 → (( ⊥ ‘{𝑋, 𝑌})((joinH‘𝐾)‘𝑊)𝐵) = (( ⊥ ‘{𝑋, 𝑌}) ⊕ 𝐵)) |
| 89 | 77, 85, 88 | 3eqtrd 2781 |
. 2
⊢ (𝜑 → ( ⊥ ‘(((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘𝐵))) = (( ⊥ ‘{𝑋, 𝑌}) ⊕ 𝐵)) |
| 90 | 3, 5, 7, 6, 10, 9,
20 | dochocsp 41381 |
. 2
⊢ (𝜑 → ( ⊥ ‘(𝑁‘{(𝑋 + 𝑌)})) = ( ⊥ ‘{(𝑋 + 𝑌)})) |
| 91 | 69, 89, 90 | 3eqtr3d 2785 |
1
⊢ (𝜑 → (( ⊥ ‘{𝑋, 𝑌}) ⊕ 𝐵) = ( ⊥ ‘{(𝑋 + 𝑌)})) |