Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem23 Structured version   Visualization version   GIF version

Theorem lcfrlem23 39579
Description: Lemma for lcfr 39599. TODO: this proof was built from other proof pieces that may change 𝑁‘{𝑋, 𝑌} into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem23.s = (LSSum‘𝑈)
Assertion
Ref Expression
lcfrlem23 (𝜑 → (( ‘{𝑋, 𝑌}) 𝐵) = ( ‘{(𝑋 + 𝑌)}))

Proof of Theorem lcfrlem23
StepHypRef Expression
1 lcfrlem22.b . . . . . . 7 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
21fveq2i 6777 . . . . . 6 ( 𝐵) = ( ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})))
3 lcfrlem17.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
4 eqid 2738 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
5 lcfrlem17.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 lcfrlem17.v . . . . . . . 8 𝑉 = (Base‘𝑈)
7 lcfrlem17.o . . . . . . . 8 = ((ocH‘𝐾)‘𝑊)
8 eqid 2738 . . . . . . . 8 ((joinH‘𝐾)‘𝑊) = ((joinH‘𝐾)‘𝑊)
9 lcfrlem17.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcfrlem17.n . . . . . . . . 9 𝑁 = (LSpan‘𝑈)
11 lcfrlem17.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3899 . . . . . . . . 9 (𝜑𝑋𝑉)
13 lcfrlem17.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3899 . . . . . . . . 9 (𝜑𝑌𝑉)
153, 5, 6, 10, 4, 9, 12, 14dihprrn 39440 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
163, 5, 9dvhlmod 39124 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
17 lcfrlem17.p . . . . . . . . . . . 12 + = (+g𝑈)
186, 17lmodvacl 20137 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
1916, 12, 14, 18syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
2019snssd 4742 . . . . . . . . 9 (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉)
213, 4, 5, 6, 7dochcl 39367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ‘{(𝑋 + 𝑌)}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
229, 20, 21syl2anc 584 . . . . . . . 8 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
233, 4, 5, 6, 7, 8, 9, 15, 22dochdmm1 39424 . . . . . . 7 (𝜑 → ( ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))) = (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)( ‘( ‘{(𝑋 + 𝑌)}))))
243, 5, 7, 6, 10, 9, 19dochocsn 39395 . . . . . . . 8 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
2524oveq2d 7291 . . . . . . 7 (𝜑 → (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)( ‘( ‘{(𝑋 + 𝑌)}))) = (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)(𝑁‘{(𝑋 + 𝑌)})))
26 lcfrlem23.s . . . . . . . 8 = (LSSum‘𝑈)
27 prssi 4754 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
2812, 14, 27syl2anc 584 . . . . . . . . . 10 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
296, 10lspssv 20245 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉)
3016, 28, 29syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉)
313, 4, 5, 6, 7dochcl 39367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊))
329, 30, 31syl2anc 584 . . . . . . . 8 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊))
333, 5, 6, 26, 10, 4, 8, 9, 32, 19dihjat1 39443 . . . . . . 7 (𝜑 → (( ‘(𝑁‘{𝑋, 𝑌}))((joinH‘𝐾)‘𝑊)(𝑁‘{(𝑋 + 𝑌)})) = (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)})))
3423, 25, 333eqtrd 2782 . . . . . 6 (𝜑 → ( ‘((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))) = (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)})))
352, 34eqtrid 2790 . . . . 5 (𝜑 → ( 𝐵) = (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)})))
3635ineq2d 4146 . . . 4 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵)) = (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)}))))
37 eqid 2738 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
3837lsssssubg 20220 . . . . . . 7 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
3916, 38syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
406, 37, 10lspsncl 20239 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
4116, 12, 40syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
426, 37, 10lspsncl 20239 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4316, 14, 42syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
4437, 26lsmcl 20345 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
4516, 41, 43, 44syl3anc 1370 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
4639, 45sseldd 3922 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (SubGrp‘𝑈))
473, 5, 6, 37, 7dochlss 39368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ⊆ 𝑉) → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈))
489, 30, 47syl2anc 584 . . . . . 6 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (LSubSp‘𝑈))
4939, 48sseldd 3922 . . . . 5 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈))
506, 37, 10lspsncl 20239 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝑋 + 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
5116, 19, 50syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
5239, 51sseldd 3922 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈))
536, 17, 10, 26lspsntri 20359 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
5416, 12, 14, 53syl3anc 1370 . . . . 5 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
5526lsmmod2 19282 . . . . 5 (((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ (SubGrp‘𝑈) ∧ ( ‘(𝑁‘{𝑋, 𝑌})) ∈ (SubGrp‘𝑈) ∧ (𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈)) ∧ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌}))) → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)}))) = ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})))
5646, 49, 52, 54, 55syl31anc 1372 . . . 4 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ (( ‘(𝑁‘{𝑋, 𝑌})) (𝑁‘{(𝑋 + 𝑌)}))) = ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})))
576, 10, 26, 16, 12, 14lsmpr 20351 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
5857ineq1d 4145 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))))
596, 37, 10, 16, 12, 14lspprcl 20240 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
60 lcfrlem17.z . . . . . . . . 9 0 = (0g𝑈)
613, 5, 37, 60, 7dochnoncon 39405 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = { 0 })
629, 59, 61syl2anc 584 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = { 0 })
6358, 62eqtr3d 2780 . . . . . 6 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) = { 0 })
6463oveq1d 7290 . . . . 5 (𝜑 → ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})) = ({ 0 } (𝑁‘{(𝑋 + 𝑌)})))
6560, 26lsm02 19278 . . . . . 6 ((𝑁‘{(𝑋 + 𝑌)}) ∈ (SubGrp‘𝑈) → ({ 0 } (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
6652, 65syl 17 . . . . 5 (𝜑 → ({ 0 } (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
6764, 66eqtrd 2778 . . . 4 (𝜑 → ((((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘(𝑁‘{𝑋, 𝑌}))) (𝑁‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
6836, 56, 673eqtrd 2782 . . 3 (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵)) = (𝑁‘{(𝑋 + 𝑌)}))
6968fveq2d 6778 . 2 (𝜑 → ( ‘(((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵))) = ( ‘(𝑁‘{(𝑋 + 𝑌)})))
703, 5, 6, 26, 10, 4, 9, 12, 14dihsmsnrn 39449 . . . 4 (𝜑 → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∈ ran ((DIsoH‘𝐾)‘𝑊))
71 lcfrlem17.a . . . . . 6 𝐴 = (LSAtoms‘𝑈)
72 lcfrlem17.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
733, 7, 5, 6, 17, 60, 10, 71, 9, 11, 13, 72, 1lcfrlem22 39578 . . . . . 6 (𝜑𝐵𝐴)
746, 71, 16, 73lsatssv 37012 . . . . 5 (𝜑𝐵𝑉)
753, 4, 5, 6, 7dochcl 39367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐵𝑉) → ( 𝐵) ∈ ran ((DIsoH‘𝐾)‘𝑊))
769, 74, 75syl2anc 584 . . . 4 (𝜑 → ( 𝐵) ∈ ran ((DIsoH‘𝐾)‘𝑊))
773, 4, 5, 6, 7, 8, 9, 70, 76dochdmm1 39424 . . 3 (𝜑 → ( ‘(((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵))) = (( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌})))((joinH‘𝐾)‘𝑊)( ‘( 𝐵))))
7857fveq2d 6778 . . . . 5 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) = ( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌}))))
793, 5, 7, 6, 10, 9, 28dochocsp 39393 . . . . 5 (𝜑 → ( ‘(𝑁‘{𝑋, 𝑌})) = ( ‘{𝑋, 𝑌}))
8078, 79eqtr3d 2780 . . . 4 (𝜑 → ( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌}))) = ( ‘{𝑋, 𝑌}))
813, 5, 4, 71dih1dimat 39344 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐵𝐴) → 𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊))
829, 73, 81syl2anc 584 . . . . 5 (𝜑𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊))
833, 4, 7dochoc 39381 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐵 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( 𝐵)) = 𝐵)
849, 82, 83syl2anc 584 . . . 4 (𝜑 → ( ‘( 𝐵)) = 𝐵)
8580, 84oveq12d 7293 . . 3 (𝜑 → (( ‘((𝑁‘{𝑋}) (𝑁‘{𝑌})))((joinH‘𝐾)‘𝑊)( ‘( 𝐵))) = (( ‘{𝑋, 𝑌})((joinH‘𝐾)‘𝑊)𝐵))
863, 4, 5, 6, 7dochcl 39367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑋, 𝑌} ⊆ 𝑉) → ( ‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
879, 28, 86syl2anc 584 . . . 4 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
883, 4, 8, 5, 26, 71, 9, 87, 73dihjat2 39445 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})((joinH‘𝐾)‘𝑊)𝐵) = (( ‘{𝑋, 𝑌}) 𝐵))
8977, 85, 883eqtrd 2782 . 2 (𝜑 → ( ‘(((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( 𝐵))) = (( ‘{𝑋, 𝑌}) 𝐵))
903, 5, 7, 6, 10, 9, 20dochocsp 39393 . 2 (𝜑 → ( ‘(𝑁‘{(𝑋 + 𝑌)})) = ( ‘{(𝑋 + 𝑌)}))
9169, 89, 903eqtr3d 2786 1 (𝜑 → (( ‘{𝑋, 𝑌}) 𝐵) = ( ‘{(𝑋 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cin 3886  wss 3887  {csn 4561  {cpr 4563  ran crn 5590  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  SubGrpcsubg 18749  LSSumclsm 19239  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LSAtomsclsa 36988  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  DIsoHcdih 39242  ocHcoch 39361  joinHcdjh 39408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409
This theorem is referenced by:  lcfrlem25  39581  lcfrlem35  39591
  Copyright terms: Public domain W3C validator