Step | Hyp | Ref
| Expression |
1 | | lcfrlem22.b |
. . . . . . 7
β’ π΅ = ((πβ{π, π}) β© ( β₯ β{(π + π)})) |
2 | 1 | fveq2i 6891 |
. . . . . 6
β’ ( β₯
βπ΅) = ( β₯
β((πβ{π, π}) β© ( β₯ β{(π + π)}))) |
3 | | lcfrlem17.h |
. . . . . . . 8
β’ π» = (LHypβπΎ) |
4 | | eqid 2732 |
. . . . . . . 8
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
5 | | lcfrlem17.u |
. . . . . . . 8
β’ π = ((DVecHβπΎ)βπ) |
6 | | lcfrlem17.v |
. . . . . . . 8
β’ π = (Baseβπ) |
7 | | lcfrlem17.o |
. . . . . . . 8
β’ β₯ =
((ocHβπΎ)βπ) |
8 | | eqid 2732 |
. . . . . . . 8
β’
((joinHβπΎ)βπ) = ((joinHβπΎ)βπ) |
9 | | lcfrlem17.k |
. . . . . . . 8
β’ (π β (πΎ β HL β§ π β π»)) |
10 | | lcfrlem17.n |
. . . . . . . . 9
β’ π = (LSpanβπ) |
11 | | lcfrlem17.x |
. . . . . . . . . 10
β’ (π β π β (π β { 0 })) |
12 | 11 | eldifad 3959 |
. . . . . . . . 9
β’ (π β π β π) |
13 | | lcfrlem17.y |
. . . . . . . . . 10
β’ (π β π β (π β { 0 })) |
14 | 13 | eldifad 3959 |
. . . . . . . . 9
β’ (π β π β π) |
15 | 3, 5, 6, 10, 4, 9,
12, 14 | dihprrn 40285 |
. . . . . . . 8
β’ (π β (πβ{π, π}) β ran ((DIsoHβπΎ)βπ)) |
16 | 3, 5, 9 | dvhlmod 39969 |
. . . . . . . . . . 11
β’ (π β π β LMod) |
17 | | lcfrlem17.p |
. . . . . . . . . . . 12
β’ + =
(+gβπ) |
18 | 6, 17 | lmodvacl 20478 |
. . . . . . . . . . 11
β’ ((π β LMod β§ π β π β§ π β π) β (π + π) β π) |
19 | 16, 12, 14, 18 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β (π + π) β π) |
20 | 19 | snssd 4811 |
. . . . . . . . 9
β’ (π β {(π + π)} β π) |
21 | 3, 4, 5, 6, 7 | dochcl 40212 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ {(π + π)} β π) β ( β₯ β{(π + π)}) β ran ((DIsoHβπΎ)βπ)) |
22 | 9, 20, 21 | syl2anc 584 |
. . . . . . . 8
β’ (π β ( β₯ β{(π + π)}) β ran ((DIsoHβπΎ)βπ)) |
23 | 3, 4, 5, 6, 7, 8, 9, 15, 22 | dochdmm1 40269 |
. . . . . . 7
β’ (π β ( β₯ β((πβ{π, π}) β© ( β₯ β{(π + π)}))) = (( β₯ β(πβ{π, π}))((joinHβπΎ)βπ)( β₯ β( β₯
β{(π + π)})))) |
24 | 3, 5, 7, 6, 10, 9,
19 | dochocsn 40240 |
. . . . . . . 8
β’ (π β ( β₯ β( β₯
β{(π + π)})) = (πβ{(π + π)})) |
25 | 24 | oveq2d 7421 |
. . . . . . 7
β’ (π β (( β₯ β(πβ{π, π}))((joinHβπΎ)βπ)( β₯ β( β₯
β{(π + π)}))) = (( β₯ β(πβ{π, π}))((joinHβπΎ)βπ)(πβ{(π + π)}))) |
26 | | lcfrlem23.s |
. . . . . . . 8
β’ β =
(LSSumβπ) |
27 | | prssi 4823 |
. . . . . . . . . . 11
β’ ((π β π β§ π β π) β {π, π} β π) |
28 | 12, 14, 27 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β {π, π} β π) |
29 | 6, 10 | lspssv 20586 |
. . . . . . . . . 10
β’ ((π β LMod β§ {π, π} β π) β (πβ{π, π}) β π) |
30 | 16, 28, 29 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (πβ{π, π}) β π) |
31 | 3, 4, 5, 6, 7 | dochcl 40212 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (πβ{π, π}) β π) β ( β₯ β(πβ{π, π})) β ran ((DIsoHβπΎ)βπ)) |
32 | 9, 30, 31 | syl2anc 584 |
. . . . . . . 8
β’ (π β ( β₯ β(πβ{π, π})) β ran ((DIsoHβπΎ)βπ)) |
33 | 3, 5, 6, 26, 10, 4, 8, 9, 32,
19 | dihjat1 40288 |
. . . . . . 7
β’ (π β (( β₯ β(πβ{π, π}))((joinHβπΎ)βπ)(πβ{(π + π)})) = (( β₯ β(πβ{π, π})) β (πβ{(π + π)}))) |
34 | 23, 25, 33 | 3eqtrd 2776 |
. . . . . 6
β’ (π β ( β₯ β((πβ{π, π}) β© ( β₯ β{(π + π)}))) = (( β₯ β(πβ{π, π})) β (πβ{(π + π)}))) |
35 | 2, 34 | eqtrid 2784 |
. . . . 5
β’ (π β ( β₯ βπ΅) = (( β₯ β(πβ{π, π})) β (πβ{(π + π)}))) |
36 | 35 | ineq2d 4211 |
. . . 4
β’ (π β (((πβ{π}) β (πβ{π})) β© ( β₯ βπ΅)) = (((πβ{π}) β (πβ{π})) β© (( β₯ β(πβ{π, π})) β (πβ{(π + π)})))) |
37 | | eqid 2732 |
. . . . . . . 8
β’
(LSubSpβπ) =
(LSubSpβπ) |
38 | 37 | lsssssubg 20561 |
. . . . . . 7
β’ (π β LMod β
(LSubSpβπ) β
(SubGrpβπ)) |
39 | 16, 38 | syl 17 |
. . . . . 6
β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
40 | 6, 37, 10 | lspsncl 20580 |
. . . . . . . 8
β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
41 | 16, 12, 40 | syl2anc 584 |
. . . . . . 7
β’ (π β (πβ{π}) β (LSubSpβπ)) |
42 | 6, 37, 10 | lspsncl 20580 |
. . . . . . . 8
β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
43 | 16, 14, 42 | syl2anc 584 |
. . . . . . 7
β’ (π β (πβ{π}) β (LSubSpβπ)) |
44 | 37, 26 | lsmcl 20686 |
. . . . . . 7
β’ ((π β LMod β§ (πβ{π}) β (LSubSpβπ) β§ (πβ{π}) β (LSubSpβπ)) β ((πβ{π}) β (πβ{π})) β (LSubSpβπ)) |
45 | 16, 41, 43, 44 | syl3anc 1371 |
. . . . . 6
β’ (π β ((πβ{π}) β (πβ{π})) β (LSubSpβπ)) |
46 | 39, 45 | sseldd 3982 |
. . . . 5
β’ (π β ((πβ{π}) β (πβ{π})) β (SubGrpβπ)) |
47 | 3, 5, 6, 37, 7 | dochlss 40213 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (πβ{π, π}) β π) β ( β₯ β(πβ{π, π})) β (LSubSpβπ)) |
48 | 9, 30, 47 | syl2anc 584 |
. . . . . 6
β’ (π β ( β₯ β(πβ{π, π})) β (LSubSpβπ)) |
49 | 39, 48 | sseldd 3982 |
. . . . 5
β’ (π β ( β₯ β(πβ{π, π})) β (SubGrpβπ)) |
50 | 6, 37, 10 | lspsncl 20580 |
. . . . . . 7
β’ ((π β LMod β§ (π + π) β π) β (πβ{(π + π)}) β (LSubSpβπ)) |
51 | 16, 19, 50 | syl2anc 584 |
. . . . . 6
β’ (π β (πβ{(π + π)}) β (LSubSpβπ)) |
52 | 39, 51 | sseldd 3982 |
. . . . 5
β’ (π β (πβ{(π + π)}) β (SubGrpβπ)) |
53 | 6, 17, 10, 26 | lspsntri 20700 |
. . . . . 6
β’ ((π β LMod β§ π β π β§ π β π) β (πβ{(π + π)}) β ((πβ{π}) β (πβ{π}))) |
54 | 16, 12, 14, 53 | syl3anc 1371 |
. . . . 5
β’ (π β (πβ{(π + π)}) β ((πβ{π}) β (πβ{π}))) |
55 | 26 | lsmmod2 19538 |
. . . . 5
β’
(((((πβ{π}) β (πβ{π})) β (SubGrpβπ) β§ ( β₯ β(πβ{π, π})) β (SubGrpβπ) β§ (πβ{(π + π)}) β (SubGrpβπ)) β§ (πβ{(π + π)}) β ((πβ{π}) β (πβ{π}))) β (((πβ{π}) β (πβ{π})) β© (( β₯ β(πβ{π, π})) β (πβ{(π + π)}))) = ((((πβ{π}) β (πβ{π})) β© ( β₯ β(πβ{π, π}))) β (πβ{(π + π)}))) |
56 | 46, 49, 52, 54, 55 | syl31anc 1373 |
. . . 4
β’ (π β (((πβ{π}) β (πβ{π})) β© (( β₯ β(πβ{π, π})) β (πβ{(π + π)}))) = ((((πβ{π}) β (πβ{π})) β© ( β₯ β(πβ{π, π}))) β (πβ{(π + π)}))) |
57 | 6, 10, 26, 16, 12, 14 | lsmpr 20692 |
. . . . . . . 8
β’ (π β (πβ{π, π}) = ((πβ{π}) β (πβ{π}))) |
58 | 57 | ineq1d 4210 |
. . . . . . 7
β’ (π β ((πβ{π, π}) β© ( β₯ β(πβ{π, π}))) = (((πβ{π}) β (πβ{π})) β© ( β₯ β(πβ{π, π})))) |
59 | 6, 37, 10, 16, 12, 14 | lspprcl 20581 |
. . . . . . . 8
β’ (π β (πβ{π, π}) β (LSubSpβπ)) |
60 | | lcfrlem17.z |
. . . . . . . . 9
β’ 0 =
(0gβπ) |
61 | 3, 5, 37, 60, 7 | dochnoncon 40250 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (πβ{π, π}) β (LSubSpβπ)) β ((πβ{π, π}) β© ( β₯ β(πβ{π, π}))) = { 0 }) |
62 | 9, 59, 61 | syl2anc 584 |
. . . . . . 7
β’ (π β ((πβ{π, π}) β© ( β₯ β(πβ{π, π}))) = { 0 }) |
63 | 58, 62 | eqtr3d 2774 |
. . . . . 6
β’ (π β (((πβ{π}) β (πβ{π})) β© ( β₯ β(πβ{π, π}))) = { 0 }) |
64 | 63 | oveq1d 7420 |
. . . . 5
β’ (π β ((((πβ{π}) β (πβ{π})) β© ( β₯ β(πβ{π, π}))) β (πβ{(π + π)})) = ({ 0 } β (πβ{(π + π)}))) |
65 | 60, 26 | lsm02 19534 |
. . . . . 6
β’ ((πβ{(π + π)}) β (SubGrpβπ) β ({ 0 } β (πβ{(π + π)})) = (πβ{(π + π)})) |
66 | 52, 65 | syl 17 |
. . . . 5
β’ (π β ({ 0 } β (πβ{(π + π)})) = (πβ{(π + π)})) |
67 | 64, 66 | eqtrd 2772 |
. . . 4
β’ (π β ((((πβ{π}) β (πβ{π})) β© ( β₯ β(πβ{π, π}))) β (πβ{(π + π)})) = (πβ{(π + π)})) |
68 | 36, 56, 67 | 3eqtrd 2776 |
. . 3
β’ (π β (((πβ{π}) β (πβ{π})) β© ( β₯ βπ΅)) = (πβ{(π + π)})) |
69 | 68 | fveq2d 6892 |
. 2
β’ (π β ( β₯ β(((πβ{π}) β (πβ{π})) β© ( β₯ βπ΅))) = ( β₯ β(πβ{(π + π)}))) |
70 | 3, 5, 6, 26, 10, 4, 9, 12, 14 | dihsmsnrn 40294 |
. . . 4
β’ (π β ((πβ{π}) β (πβ{π})) β ran ((DIsoHβπΎ)βπ)) |
71 | | lcfrlem17.a |
. . . . . 6
β’ π΄ = (LSAtomsβπ) |
72 | | lcfrlem17.ne |
. . . . . . 7
β’ (π β (πβ{π}) β (πβ{π})) |
73 | 3, 7, 5, 6, 17, 60, 10, 71, 9, 11, 13, 72, 1 | lcfrlem22 40423 |
. . . . . 6
β’ (π β π΅ β π΄) |
74 | 6, 71, 16, 73 | lsatssv 37856 |
. . . . 5
β’ (π β π΅ β π) |
75 | 3, 4, 5, 6, 7 | dochcl 40212 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π΅ β π) β ( β₯ βπ΅) β ran ((DIsoHβπΎ)βπ)) |
76 | 9, 74, 75 | syl2anc 584 |
. . . 4
β’ (π β ( β₯ βπ΅) β ran ((DIsoHβπΎ)βπ)) |
77 | 3, 4, 5, 6, 7, 8, 9, 70, 76 | dochdmm1 40269 |
. . 3
β’ (π β ( β₯ β(((πβ{π}) β (πβ{π})) β© ( β₯ βπ΅))) = (( β₯ β((πβ{π}) β (πβ{π})))((joinHβπΎ)βπ)( β₯ β( β₯
βπ΅)))) |
78 | 57 | fveq2d 6892 |
. . . . 5
β’ (π β ( β₯ β(πβ{π, π})) = ( β₯ β((πβ{π}) β (πβ{π})))) |
79 | 3, 5, 7, 6, 10, 9,
28 | dochocsp 40238 |
. . . . 5
β’ (π β ( β₯ β(πβ{π, π})) = ( β₯ β{π, π})) |
80 | 78, 79 | eqtr3d 2774 |
. . . 4
β’ (π β ( β₯ β((πβ{π}) β (πβ{π}))) = ( β₯ β{π, π})) |
81 | 3, 5, 4, 71 | dih1dimat 40189 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ π΅ β π΄) β π΅ β ran ((DIsoHβπΎ)βπ)) |
82 | 9, 73, 81 | syl2anc 584 |
. . . . 5
β’ (π β π΅ β ran ((DIsoHβπΎ)βπ)) |
83 | 3, 4, 7 | dochoc 40226 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π΅ β ran ((DIsoHβπΎ)βπ)) β ( β₯ β( β₯
βπ΅)) = π΅) |
84 | 9, 82, 83 | syl2anc 584 |
. . . 4
β’ (π β ( β₯ β( β₯
βπ΅)) = π΅) |
85 | 80, 84 | oveq12d 7423 |
. . 3
β’ (π β (( β₯ β((πβ{π}) β (πβ{π})))((joinHβπΎ)βπ)( β₯ β( β₯
βπ΅))) = (( β₯
β{π, π})((joinHβπΎ)βπ)π΅)) |
86 | 3, 4, 5, 6, 7 | dochcl 40212 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ {π, π} β π) β ( β₯ β{π, π}) β ran ((DIsoHβπΎ)βπ)) |
87 | 9, 28, 86 | syl2anc 584 |
. . . 4
β’ (π β ( β₯ β{π, π}) β ran ((DIsoHβπΎ)βπ)) |
88 | 3, 4, 8, 5, 26, 71, 9, 87, 73 | dihjat2 40290 |
. . 3
β’ (π β (( β₯ β{π, π})((joinHβπΎ)βπ)π΅) = (( β₯ β{π, π}) β π΅)) |
89 | 77, 85, 88 | 3eqtrd 2776 |
. 2
β’ (π β ( β₯ β(((πβ{π}) β (πβ{π})) β© ( β₯ βπ΅))) = (( β₯ β{π, π}) β π΅)) |
90 | 3, 5, 7, 6, 10, 9,
20 | dochocsp 40238 |
. 2
β’ (π β ( β₯ β(πβ{(π + π)})) = ( β₯ β{(π + π)})) |
91 | 69, 89, 90 | 3eqtr3d 2780 |
1
β’ (π β (( β₯ β{π, π}) β π΅) = ( β₯ β{(π + π)})) |