Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6eN Structured version   Visualization version   GIF version

Theorem mapdh6eN 40135
Description: Lemmma for mapdh6N 40142. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdh6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdh6eN (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   𝑤,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   + (𝑤)   (𝑥,𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)   𝑍(𝑤)

Proof of Theorem mapdh6eN
StepHypRef Expression
1 mapdh.q . 2 𝑄 = (0g𝐶)
2 mapdh.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . 2 𝐻 = (LHyp‘𝐾)
4 mapdh.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . 2 𝑉 = (Base‘𝑈)
7 mapdh.s . 2 = (-g𝑈)
8 mapdhc.o . 2 0 = (0g𝑈)
9 mapdh.n . 2 𝑁 = (LSpan‘𝑈)
10 mapdh.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . 2 𝐷 = (Base‘𝐶)
12 mapdh.r . 2 𝑅 = (-g𝐶)
13 mapdh.j . 2 𝐽 = (LSpan‘𝐶)
14 mapdh.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . 2 (𝜑𝐹𝐷)
16 mapdh.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdh.p . 2 + = (+g𝑈)
19 mapdh.a . 2 = (+g𝐶)
203, 5, 14dvhlmod 39505 . . . 4 (𝜑𝑈 ∈ LMod)
21 mapdh6d.w . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2221eldifad 3920 . . . 4 (𝜑𝑤𝑉)
23 mapdh6d.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3920 . . . 4 (𝜑𝑌𝑉)
256, 18lmodvacl 20283 . . . 4 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) ∈ 𝑉)
2620, 22, 24, 25syl3anc 1371 . . 3 (𝜑 → (𝑤 + 𝑌) ∈ 𝑉)
273, 5, 14dvhlvec 39504 . . . . . 6 (𝜑𝑈 ∈ LVec)
2817eldifad 3920 . . . . . 6 (𝜑𝑋𝑉)
29 mapdh6d.wn . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
306, 9, 27, 22, 28, 24, 29lspindpi 20540 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
3130simprd 496 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
326, 18, 8, 9, 20, 22, 24, 31lmodindp1 20422 . . 3 (𝜑 → (𝑤 + 𝑌) ≠ 0 )
33 eldifsn 4745 . . 3 ((𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑤 + 𝑌) ∈ 𝑉 ∧ (𝑤 + 𝑌) ≠ 0 ))
3426, 32, 33sylanbrc 583 . 2 (𝜑 → (𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }))
35 mapdh6d.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3635eldifad 3920 . . . . 5 (𝜑𝑍𝑉)
37 mapdh6d.yz . . . . . 6 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
38 mapdh6d.xn . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
396, 9, 27, 28, 24, 36, 38lspindpi 20540 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
4039simpld 495 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
416, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp3 40117 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
426, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp4 40118 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))
436, 8, 9, 27, 17, 26, 36, 41, 42lspindp1 20541 . . . 4 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})))
4443simprd 496 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
45 prcom 4691 . . . . 5 {(𝑤 + 𝑌), 𝑍} = {𝑍, (𝑤 + 𝑌)}
4645fveq2i 6842 . . . 4 (𝑁‘{(𝑤 + 𝑌), 𝑍}) = (𝑁‘{𝑍, (𝑤 + 𝑌)})
4746eleq2i 2829 . . 3 (𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}) ↔ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
4844, 47sylnibr 328 . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}))
496, 9, 27, 36, 28, 26, 42lspindpi 20540 . . . 4 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)})))
5049simprd 496 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
5150necomd 2997 . 2 (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) ≠ (𝑁‘{𝑍}))
52 eqidd 2737 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩))
53 eqidd 2737 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53mapdh6aN 40130 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2941  Vcvv 3443  cdif 3905  ifcif 4484  {csn 4584  {cpr 4586  cotp 4592  cmpt 5186  cfv 6493  crio 7306  (class class class)co 7351  1st c1st 7911  2nd c2nd 7912  Basecbs 17037  +gcplusg 17087  0gc0g 17275  -gcsg 18704  LModclmod 20269  LSpanclspn 20379  HLchlt 37744  LHypclh 38379  DVecHcdvh 39473  LCDualclcd 39981  mapdcmpd 40019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 37347
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-ot 4593  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-of 7609  df-om 7795  df-1st 7913  df-2nd 7914  df-tpos 8149  df-undef 8196  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-map 8725  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-2 12174  df-3 12175  df-4 12176  df-5 12177  df-6 12178  df-n0 12372  df-z 12458  df-uz 12722  df-fz 13379  df-struct 16973  df-sets 16990  df-slot 17008  df-ndx 17020  df-base 17038  df-ress 17067  df-plusg 17100  df-mulr 17101  df-sca 17103  df-vsca 17104  df-0g 17277  df-mre 17420  df-mrc 17421  df-acs 17423  df-proset 18138  df-poset 18156  df-plt 18173  df-lub 18189  df-glb 18190  df-join 18191  df-meet 18192  df-p0 18268  df-p1 18269  df-lat 18275  df-clat 18342  df-mgm 18451  df-sgrp 18500  df-mnd 18511  df-submnd 18556  df-grp 18705  df-minusg 18706  df-sbg 18707  df-subg 18878  df-cntz 19050  df-oppg 19077  df-lsm 19371  df-cmn 19517  df-abl 19518  df-mgp 19850  df-ur 19867  df-ring 19914  df-oppr 19996  df-dvdsr 20017  df-unit 20018  df-invr 20048  df-dvr 20059  df-drng 20134  df-lmod 20271  df-lss 20340  df-lsp 20380  df-lvec 20511  df-lsatoms 37370  df-lshyp 37371  df-lcv 37413  df-lfl 37452  df-lkr 37480  df-ldual 37518  df-oposet 37570  df-ol 37572  df-oml 37573  df-covers 37660  df-ats 37661  df-atl 37692  df-cvlat 37716  df-hlat 37745  df-llines 37893  df-lplanes 37894  df-lvols 37895  df-lines 37896  df-psubsp 37898  df-pmap 37899  df-padd 38191  df-lhyp 38383  df-laut 38384  df-ldil 38499  df-ltrn 38500  df-trl 38554  df-tgrp 39138  df-tendo 39150  df-edring 39152  df-dveca 39398  df-disoa 39424  df-dvech 39474  df-dib 39534  df-dic 39568  df-dih 39624  df-doch 39743  df-djh 39790  df-lcdual 39982  df-mapd 40020
This theorem is referenced by:  mapdh6gN  40137
  Copyright terms: Public domain W3C validator