Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6eN Structured version   Visualization version   GIF version

Theorem mapdh6eN 41742
Description: Lemmma for mapdh6N 41749. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdh6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdh6eN (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   𝑤,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   + (𝑤)   (𝑥,𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)   𝑍(𝑤)

Proof of Theorem mapdh6eN
StepHypRef Expression
1 mapdh.q . 2 𝑄 = (0g𝐶)
2 mapdh.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . 2 𝐻 = (LHyp‘𝐾)
4 mapdh.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . 2 𝑉 = (Base‘𝑈)
7 mapdh.s . 2 = (-g𝑈)
8 mapdhc.o . 2 0 = (0g𝑈)
9 mapdh.n . 2 𝑁 = (LSpan‘𝑈)
10 mapdh.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . 2 𝐷 = (Base‘𝐶)
12 mapdh.r . 2 𝑅 = (-g𝐶)
13 mapdh.j . 2 𝐽 = (LSpan‘𝐶)
14 mapdh.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . 2 (𝜑𝐹𝐷)
16 mapdh.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdh.p . 2 + = (+g𝑈)
19 mapdh.a . 2 = (+g𝐶)
203, 5, 14dvhlmod 41112 . . . 4 (𝜑𝑈 ∈ LMod)
21 mapdh6d.w . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2221eldifad 3963 . . . 4 (𝜑𝑤𝑉)
23 mapdh6d.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3963 . . . 4 (𝜑𝑌𝑉)
256, 18lmodvacl 20873 . . . 4 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) ∈ 𝑉)
2620, 22, 24, 25syl3anc 1373 . . 3 (𝜑 → (𝑤 + 𝑌) ∈ 𝑉)
273, 5, 14dvhlvec 41111 . . . . . 6 (𝜑𝑈 ∈ LVec)
2817eldifad 3963 . . . . . 6 (𝜑𝑋𝑉)
29 mapdh6d.wn . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
306, 9, 27, 22, 28, 24, 29lspindpi 21134 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
3130simprd 495 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
326, 18, 8, 9, 20, 22, 24, 31lmodindp1 21012 . . 3 (𝜑 → (𝑤 + 𝑌) ≠ 0 )
33 eldifsn 4786 . . 3 ((𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑤 + 𝑌) ∈ 𝑉 ∧ (𝑤 + 𝑌) ≠ 0 ))
3426, 32, 33sylanbrc 583 . 2 (𝜑 → (𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }))
35 mapdh6d.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3635eldifad 3963 . . . . 5 (𝜑𝑍𝑉)
37 mapdh6d.yz . . . . . 6 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
38 mapdh6d.xn . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
396, 9, 27, 28, 24, 36, 38lspindpi 21134 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
4039simpld 494 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
416, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp3 41724 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
426, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp4 41725 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))
436, 8, 9, 27, 17, 26, 36, 41, 42lspindp1 21135 . . . 4 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})))
4443simprd 495 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
45 prcom 4732 . . . . 5 {(𝑤 + 𝑌), 𝑍} = {𝑍, (𝑤 + 𝑌)}
4645fveq2i 6909 . . . 4 (𝑁‘{(𝑤 + 𝑌), 𝑍}) = (𝑁‘{𝑍, (𝑤 + 𝑌)})
4746eleq2i 2833 . . 3 (𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}) ↔ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
4844, 47sylnibr 329 . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}))
496, 9, 27, 36, 28, 26, 42lspindpi 21134 . . . 4 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)})))
5049simprd 495 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
5150necomd 2996 . 2 (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) ≠ (𝑁‘{𝑍}))
52 eqidd 2738 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩))
53 eqidd 2738 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53mapdh6aN 41737 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cdif 3948  ifcif 4525  {csn 4626  {cpr 4628  cotp 4634  cmpt 5225  cfv 6561  crio 7387  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  Basecbs 17247  +gcplusg 17297  0gc0g 17484  -gcsg 18953  LModclmod 20858  LSpanclspn 20969  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  LCDualclcd 41588  mapdcmpd 41626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-mre 17629  df-mrc 17630  df-acs 17632  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-oppg 19364  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-nzr 20513  df-rlreg 20694  df-domn 20695  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lcv 39020  df-lfl 39059  df-lkr 39087  df-ldual 39125  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397  df-lcdual 41589  df-mapd 41627
This theorem is referenced by:  mapdh6gN  41744
  Copyright terms: Public domain W3C validator