![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6eN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 41260. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | β’ π = (0gβπΆ) |
mapdh.i | β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
mapdh.h | β’ π» = (LHypβπΎ) |
mapdh.m | β’ π = ((mapdβπΎ)βπ) |
mapdh.u | β’ π = ((DVecHβπΎ)βπ) |
mapdh.v | β’ π = (Baseβπ) |
mapdh.s | β’ β = (-gβπ) |
mapdhc.o | β’ 0 = (0gβπ) |
mapdh.n | β’ π = (LSpanβπ) |
mapdh.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdh.d | β’ π· = (BaseβπΆ) |
mapdh.r | β’ π = (-gβπΆ) |
mapdh.j | β’ π½ = (LSpanβπΆ) |
mapdh.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdhc.f | β’ (π β πΉ β π·) |
mapdh.mn | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdhcl.x | β’ (π β π β (π β { 0 })) |
mapdh.p | β’ + = (+gβπ) |
mapdh.a | β’ β = (+gβπΆ) |
mapdh6d.xn | β’ (π β Β¬ π β (πβ{π, π})) |
mapdh6d.yz | β’ (π β (πβ{π}) = (πβ{π})) |
mapdh6d.y | β’ (π β π β (π β { 0 })) |
mapdh6d.z | β’ (π β π β (π β { 0 })) |
mapdh6d.w | β’ (π β π€ β (π β { 0 })) |
mapdh6d.wn | β’ (π β Β¬ π€ β (πβ{π, π})) |
Ref | Expression |
---|---|
mapdh6eN | β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . 2 β’ π = (0gβπΆ) | |
2 | mapdh.i | . 2 β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
3 | mapdh.h | . 2 β’ π» = (LHypβπΎ) | |
4 | mapdh.m | . 2 β’ π = ((mapdβπΎ)βπ) | |
5 | mapdh.u | . 2 β’ π = ((DVecHβπΎ)βπ) | |
6 | mapdh.v | . 2 β’ π = (Baseβπ) | |
7 | mapdh.s | . 2 β’ β = (-gβπ) | |
8 | mapdhc.o | . 2 β’ 0 = (0gβπ) | |
9 | mapdh.n | . 2 β’ π = (LSpanβπ) | |
10 | mapdh.c | . 2 β’ πΆ = ((LCDualβπΎ)βπ) | |
11 | mapdh.d | . 2 β’ π· = (BaseβπΆ) | |
12 | mapdh.r | . 2 β’ π = (-gβπΆ) | |
13 | mapdh.j | . 2 β’ π½ = (LSpanβπΆ) | |
14 | mapdh.k | . 2 β’ (π β (πΎ β HL β§ π β π»)) | |
15 | mapdhc.f | . 2 β’ (π β πΉ β π·) | |
16 | mapdh.mn | . 2 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
17 | mapdhcl.x | . 2 β’ (π β π β (π β { 0 })) | |
18 | mapdh.p | . 2 β’ + = (+gβπ) | |
19 | mapdh.a | . 2 β’ β = (+gβπΆ) | |
20 | 3, 5, 14 | dvhlmod 40623 | . . . 4 β’ (π β π β LMod) |
21 | mapdh6d.w | . . . . 5 β’ (π β π€ β (π β { 0 })) | |
22 | 21 | eldifad 3961 | . . . 4 β’ (π β π€ β π) |
23 | mapdh6d.y | . . . . 5 β’ (π β π β (π β { 0 })) | |
24 | 23 | eldifad 3961 | . . . 4 β’ (π β π β π) |
25 | 6, 18 | lmodvacl 20772 | . . . 4 β’ ((π β LMod β§ π€ β π β§ π β π) β (π€ + π) β π) |
26 | 20, 22, 24, 25 | syl3anc 1368 | . . 3 β’ (π β (π€ + π) β π) |
27 | 3, 5, 14 | dvhlvec 40622 | . . . . . 6 β’ (π β π β LVec) |
28 | 17 | eldifad 3961 | . . . . . 6 β’ (π β π β π) |
29 | mapdh6d.wn | . . . . . 6 β’ (π β Β¬ π€ β (πβ{π, π})) | |
30 | 6, 9, 27, 22, 28, 24, 29 | lspindpi 21034 | . . . . 5 β’ (π β ((πβ{π€}) β (πβ{π}) β§ (πβ{π€}) β (πβ{π}))) |
31 | 30 | simprd 494 | . . . 4 β’ (π β (πβ{π€}) β (πβ{π})) |
32 | 6, 18, 8, 9, 20, 22, 24, 31 | lmodindp1 20912 | . . 3 β’ (π β (π€ + π) β 0 ) |
33 | eldifsn 4795 | . . 3 β’ ((π€ + π) β (π β { 0 }) β ((π€ + π) β π β§ (π€ + π) β 0 )) | |
34 | 26, 32, 33 | sylanbrc 581 | . 2 β’ (π β (π€ + π) β (π β { 0 })) |
35 | mapdh6d.z | . 2 β’ (π β π β (π β { 0 })) | |
36 | 35 | eldifad 3961 | . . . . 5 β’ (π β π β π) |
37 | mapdh6d.yz | . . . . . 6 β’ (π β (πβ{π}) = (πβ{π})) | |
38 | mapdh6d.xn | . . . . . . . 8 β’ (π β Β¬ π β (πβ{π, π})) | |
39 | 6, 9, 27, 28, 24, 36, 38 | lspindpi 21034 | . . . . . . 7 β’ (π β ((πβ{π}) β (πβ{π}) β§ (πβ{π}) β (πβ{π}))) |
40 | 39 | simpld 493 | . . . . . 6 β’ (π β (πβ{π}) β (πβ{π})) |
41 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp3 41235 | . . . . 5 β’ (π β (πβ{π}) β (πβ{(π€ + π)})) |
42 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp4 41236 | . . . . 5 β’ (π β Β¬ π β (πβ{π, (π€ + π)})) |
43 | 6, 8, 9, 27, 17, 26, 36, 41, 42 | lspindp1 21035 | . . . 4 β’ (π β ((πβ{π}) β (πβ{(π€ + π)}) β§ Β¬ π β (πβ{π, (π€ + π)}))) |
44 | 43 | simprd 494 | . . 3 β’ (π β Β¬ π β (πβ{π, (π€ + π)})) |
45 | prcom 4741 | . . . . 5 β’ {(π€ + π), π} = {π, (π€ + π)} | |
46 | 45 | fveq2i 6905 | . . . 4 β’ (πβ{(π€ + π), π}) = (πβ{π, (π€ + π)}) |
47 | 46 | eleq2i 2821 | . . 3 β’ (π β (πβ{(π€ + π), π}) β π β (πβ{π, (π€ + π)})) |
48 | 44, 47 | sylnibr 328 | . 2 β’ (π β Β¬ π β (πβ{(π€ + π), π})) |
49 | 6, 9, 27, 36, 28, 26, 42 | lspindpi 21034 | . . . 4 β’ (π β ((πβ{π}) β (πβ{π}) β§ (πβ{π}) β (πβ{(π€ + π)}))) |
50 | 49 | simprd 494 | . . 3 β’ (π β (πβ{π}) β (πβ{(π€ + π)})) |
51 | 50 | necomd 2993 | . 2 β’ (π β (πβ{(π€ + π)}) β (πβ{π})) |
52 | eqidd 2729 | . 2 β’ (π β (πΌββ¨π, πΉ, (π€ + π)β©) = (πΌββ¨π, πΉ, (π€ + π)β©)) | |
53 | eqidd 2729 | . 2 β’ (π β (πΌββ¨π, πΉ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53 | mapdh6aN 41248 | 1 β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2937 Vcvv 3473 β cdif 3946 ifcif 4532 {csn 4632 {cpr 4634 β¨cotp 4640 β¦ cmpt 5235 βcfv 6553 β©crio 7381 (class class class)co 7426 1st c1st 7999 2nd c2nd 8000 Basecbs 17189 +gcplusg 17242 0gc0g 17430 -gcsg 18906 LModclmod 20757 LSpanclspn 20869 HLchlt 38862 LHypclh 39497 DVecHcdvh 40591 LCDualclcd 41099 mapdcmpd 41137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-riotaBAD 38465 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-tpos 8240 df-undef 8287 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-n0 12513 df-z 12599 df-uz 12863 df-fz 13527 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-mulr 17256 df-sca 17258 df-vsca 17259 df-0g 17432 df-mre 17575 df-mrc 17576 df-acs 17578 df-proset 18296 df-poset 18314 df-plt 18331 df-lub 18347 df-glb 18348 df-join 18349 df-meet 18350 df-p0 18426 df-p1 18427 df-lat 18433 df-clat 18500 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-submnd 18750 df-grp 18907 df-minusg 18908 df-sbg 18909 df-subg 19092 df-cntz 19282 df-oppg 19311 df-lsm 19605 df-cmn 19751 df-abl 19752 df-mgp 20089 df-rng 20107 df-ur 20136 df-ring 20189 df-oppr 20287 df-dvdsr 20310 df-unit 20311 df-invr 20341 df-dvr 20354 df-drng 20640 df-lmod 20759 df-lss 20830 df-lsp 20870 df-lvec 21002 df-lsatoms 38488 df-lshyp 38489 df-lcv 38531 df-lfl 38570 df-lkr 38598 df-ldual 38636 df-oposet 38688 df-ol 38690 df-oml 38691 df-covers 38778 df-ats 38779 df-atl 38810 df-cvlat 38834 df-hlat 38863 df-llines 39011 df-lplanes 39012 df-lvols 39013 df-lines 39014 df-psubsp 39016 df-pmap 39017 df-padd 39309 df-lhyp 39501 df-laut 39502 df-ldil 39617 df-ltrn 39618 df-trl 39672 df-tgrp 40256 df-tendo 40268 df-edring 40270 df-dveca 40516 df-disoa 40542 df-dvech 40592 df-dib 40652 df-dic 40686 df-dih 40742 df-doch 40861 df-djh 40908 df-lcdual 41100 df-mapd 41138 |
This theorem is referenced by: mapdh6gN 41255 |
Copyright terms: Public domain | W3C validator |