![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6eN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 40618. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | β’ π = (0gβπΆ) |
mapdh.i | β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) |
mapdh.h | β’ π» = (LHypβπΎ) |
mapdh.m | β’ π = ((mapdβπΎ)βπ) |
mapdh.u | β’ π = ((DVecHβπΎ)βπ) |
mapdh.v | β’ π = (Baseβπ) |
mapdh.s | β’ β = (-gβπ) |
mapdhc.o | β’ 0 = (0gβπ) |
mapdh.n | β’ π = (LSpanβπ) |
mapdh.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdh.d | β’ π· = (BaseβπΆ) |
mapdh.r | β’ π = (-gβπΆ) |
mapdh.j | β’ π½ = (LSpanβπΆ) |
mapdh.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdhc.f | β’ (π β πΉ β π·) |
mapdh.mn | β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) |
mapdhcl.x | β’ (π β π β (π β { 0 })) |
mapdh.p | β’ + = (+gβπ) |
mapdh.a | β’ β = (+gβπΆ) |
mapdh6d.xn | β’ (π β Β¬ π β (πβ{π, π})) |
mapdh6d.yz | β’ (π β (πβ{π}) = (πβ{π})) |
mapdh6d.y | β’ (π β π β (π β { 0 })) |
mapdh6d.z | β’ (π β π β (π β { 0 })) |
mapdh6d.w | β’ (π β π€ β (π β { 0 })) |
mapdh6d.wn | β’ (π β Β¬ π€ β (πβ{π, π})) |
Ref | Expression |
---|---|
mapdh6eN | β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . 2 β’ π = (0gβπΆ) | |
2 | mapdh.i | . 2 β’ πΌ = (π₯ β V β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st β(1st βπ₯)) β (2nd βπ₯))})) = (π½β{((2nd β(1st βπ₯))π β)}))))) | |
3 | mapdh.h | . 2 β’ π» = (LHypβπΎ) | |
4 | mapdh.m | . 2 β’ π = ((mapdβπΎ)βπ) | |
5 | mapdh.u | . 2 β’ π = ((DVecHβπΎ)βπ) | |
6 | mapdh.v | . 2 β’ π = (Baseβπ) | |
7 | mapdh.s | . 2 β’ β = (-gβπ) | |
8 | mapdhc.o | . 2 β’ 0 = (0gβπ) | |
9 | mapdh.n | . 2 β’ π = (LSpanβπ) | |
10 | mapdh.c | . 2 β’ πΆ = ((LCDualβπΎ)βπ) | |
11 | mapdh.d | . 2 β’ π· = (BaseβπΆ) | |
12 | mapdh.r | . 2 β’ π = (-gβπΆ) | |
13 | mapdh.j | . 2 β’ π½ = (LSpanβπΆ) | |
14 | mapdh.k | . 2 β’ (π β (πΎ β HL β§ π β π»)) | |
15 | mapdhc.f | . 2 β’ (π β πΉ β π·) | |
16 | mapdh.mn | . 2 β’ (π β (πβ(πβ{π})) = (π½β{πΉ})) | |
17 | mapdhcl.x | . 2 β’ (π β π β (π β { 0 })) | |
18 | mapdh.p | . 2 β’ + = (+gβπ) | |
19 | mapdh.a | . 2 β’ β = (+gβπΆ) | |
20 | 3, 5, 14 | dvhlmod 39981 | . . . 4 β’ (π β π β LMod) |
21 | mapdh6d.w | . . . . 5 β’ (π β π€ β (π β { 0 })) | |
22 | 21 | eldifad 3961 | . . . 4 β’ (π β π€ β π) |
23 | mapdh6d.y | . . . . 5 β’ (π β π β (π β { 0 })) | |
24 | 23 | eldifad 3961 | . . . 4 β’ (π β π β π) |
25 | 6, 18 | lmodvacl 20486 | . . . 4 β’ ((π β LMod β§ π€ β π β§ π β π) β (π€ + π) β π) |
26 | 20, 22, 24, 25 | syl3anc 1372 | . . 3 β’ (π β (π€ + π) β π) |
27 | 3, 5, 14 | dvhlvec 39980 | . . . . . 6 β’ (π β π β LVec) |
28 | 17 | eldifad 3961 | . . . . . 6 β’ (π β π β π) |
29 | mapdh6d.wn | . . . . . 6 β’ (π β Β¬ π€ β (πβ{π, π})) | |
30 | 6, 9, 27, 22, 28, 24, 29 | lspindpi 20745 | . . . . 5 β’ (π β ((πβ{π€}) β (πβ{π}) β§ (πβ{π€}) β (πβ{π}))) |
31 | 30 | simprd 497 | . . . 4 β’ (π β (πβ{π€}) β (πβ{π})) |
32 | 6, 18, 8, 9, 20, 22, 24, 31 | lmodindp1 20625 | . . 3 β’ (π β (π€ + π) β 0 ) |
33 | eldifsn 4791 | . . 3 β’ ((π€ + π) β (π β { 0 }) β ((π€ + π) β π β§ (π€ + π) β 0 )) | |
34 | 26, 32, 33 | sylanbrc 584 | . 2 β’ (π β (π€ + π) β (π β { 0 })) |
35 | mapdh6d.z | . 2 β’ (π β π β (π β { 0 })) | |
36 | 35 | eldifad 3961 | . . . . 5 β’ (π β π β π) |
37 | mapdh6d.yz | . . . . . 6 β’ (π β (πβ{π}) = (πβ{π})) | |
38 | mapdh6d.xn | . . . . . . . 8 β’ (π β Β¬ π β (πβ{π, π})) | |
39 | 6, 9, 27, 28, 24, 36, 38 | lspindpi 20745 | . . . . . . 7 β’ (π β ((πβ{π}) β (πβ{π}) β§ (πβ{π}) β (πβ{π}))) |
40 | 39 | simpld 496 | . . . . . 6 β’ (π β (πβ{π}) β (πβ{π})) |
41 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp3 40593 | . . . . 5 β’ (π β (πβ{π}) β (πβ{(π€ + π)})) |
42 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp4 40594 | . . . . 5 β’ (π β Β¬ π β (πβ{π, (π€ + π)})) |
43 | 6, 8, 9, 27, 17, 26, 36, 41, 42 | lspindp1 20746 | . . . 4 β’ (π β ((πβ{π}) β (πβ{(π€ + π)}) β§ Β¬ π β (πβ{π, (π€ + π)}))) |
44 | 43 | simprd 497 | . . 3 β’ (π β Β¬ π β (πβ{π, (π€ + π)})) |
45 | prcom 4737 | . . . . 5 β’ {(π€ + π), π} = {π, (π€ + π)} | |
46 | 45 | fveq2i 6895 | . . . 4 β’ (πβ{(π€ + π), π}) = (πβ{π, (π€ + π)}) |
47 | 46 | eleq2i 2826 | . . 3 β’ (π β (πβ{(π€ + π), π}) β π β (πβ{π, (π€ + π)})) |
48 | 44, 47 | sylnibr 329 | . 2 β’ (π β Β¬ π β (πβ{(π€ + π), π})) |
49 | 6, 9, 27, 36, 28, 26, 42 | lspindpi 20745 | . . . 4 β’ (π β ((πβ{π}) β (πβ{π}) β§ (πβ{π}) β (πβ{(π€ + π)}))) |
50 | 49 | simprd 497 | . . 3 β’ (π β (πβ{π}) β (πβ{(π€ + π)})) |
51 | 50 | necomd 2997 | . 2 β’ (π β (πβ{(π€ + π)}) β (πβ{π})) |
52 | eqidd 2734 | . 2 β’ (π β (πΌββ¨π, πΉ, (π€ + π)β©) = (πΌββ¨π, πΉ, (π€ + π)β©)) | |
53 | eqidd 2734 | . 2 β’ (π β (πΌββ¨π, πΉ, πβ©) = (πΌββ¨π, πΉ, πβ©)) | |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53 | mapdh6aN 40606 | 1 β’ (π β (πΌββ¨π, πΉ, ((π€ + π) + π)β©) = ((πΌββ¨π, πΉ, (π€ + π)β©) β (πΌββ¨π, πΉ, πβ©))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 Vcvv 3475 β cdif 3946 ifcif 4529 {csn 4629 {cpr 4631 β¨cotp 4637 β¦ cmpt 5232 βcfv 6544 β©crio 7364 (class class class)co 7409 1st c1st 7973 2nd c2nd 7974 Basecbs 17144 +gcplusg 17197 0gc0g 17385 -gcsg 18821 LModclmod 20471 LSpanclspn 20582 HLchlt 38220 LHypclh 38855 DVecHcdvh 39949 LCDualclcd 40457 mapdcmpd 40495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-riotaBAD 37823 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-undef 8258 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17387 df-mre 17530 df-mrc 17531 df-acs 17533 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-cntz 19181 df-oppg 19210 df-lsm 19504 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-dvr 20215 df-drng 20359 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lvec 20714 df-lsatoms 37846 df-lshyp 37847 df-lcv 37889 df-lfl 37928 df-lkr 37956 df-ldual 37994 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 df-trl 39030 df-tgrp 39614 df-tendo 39626 df-edring 39628 df-dveca 39874 df-disoa 39900 df-dvech 39950 df-dib 40010 df-dic 40044 df-dih 40100 df-doch 40219 df-djh 40266 df-lcdual 40458 df-mapd 40496 |
This theorem is referenced by: mapdh6gN 40613 |
Copyright terms: Public domain | W3C validator |