Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6eN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 39358. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh.p | ⊢ + = (+g‘𝑈) |
mapdh.a | ⊢ ✚ = (+g‘𝐶) |
mapdh6d.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
mapdh6d.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdh6d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.wn | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdh6eN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | mapdh.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
5 | mapdh.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | mapdh.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
7 | mapdh.s | . 2 ⊢ − = (-g‘𝑈) | |
8 | mapdhc.o | . 2 ⊢ 0 = (0g‘𝑈) | |
9 | mapdh.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | mapdh.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdh.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
12 | mapdh.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
13 | mapdh.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
14 | mapdh.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdhc.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | mapdhcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | mapdh.p | . 2 ⊢ + = (+g‘𝑈) | |
19 | mapdh.a | . 2 ⊢ ✚ = (+g‘𝐶) | |
20 | 3, 5, 14 | dvhlmod 38721 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
21 | mapdh6d.w | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
22 | 21 | eldifad 3872 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
23 | mapdh6d.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
24 | 23 | eldifad 3872 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
25 | 6, 18 | lmodvacl 19730 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑤 + 𝑌) ∈ 𝑉) |
26 | 20, 22, 24, 25 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑤 + 𝑌) ∈ 𝑉) |
27 | 3, 5, 14 | dvhlvec 38720 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
28 | 17 | eldifad 3872 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
29 | mapdh6d.wn | . . . . . 6 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
30 | 6, 9, 27, 22, 28, 24, 29 | lspindpi 19986 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
31 | 30 | simprd 499 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
32 | 6, 18, 8, 9, 20, 22, 24, 31 | lmodindp1 19868 | . . 3 ⊢ (𝜑 → (𝑤 + 𝑌) ≠ 0 ) |
33 | eldifsn 4680 | . . 3 ⊢ ((𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑤 + 𝑌) ∈ 𝑉 ∧ (𝑤 + 𝑌) ≠ 0 )) | |
34 | 26, 32, 33 | sylanbrc 586 | . 2 ⊢ (𝜑 → (𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
35 | mapdh6d.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
36 | 35 | eldifad 3872 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
37 | mapdh6d.yz | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
38 | mapdh6d.xn | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
39 | 6, 9, 27, 28, 24, 36, 38 | lspindpi 19986 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
40 | 39 | simpld 498 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
41 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp3 39333 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
42 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp4 39334 | . . . . 5 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})) |
43 | 6, 8, 9, 27, 17, 26, 36, 41, 42 | lspindp1 19987 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))) |
44 | 43 | simprd 499 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})) |
45 | prcom 4628 | . . . . 5 ⊢ {(𝑤 + 𝑌), 𝑍} = {𝑍, (𝑤 + 𝑌)} | |
46 | 45 | fveq2i 6666 | . . . 4 ⊢ (𝑁‘{(𝑤 + 𝑌), 𝑍}) = (𝑁‘{𝑍, (𝑤 + 𝑌)}) |
47 | 46 | eleq2i 2843 | . . 3 ⊢ (𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}) ↔ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})) |
48 | 44, 47 | sylnibr 332 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍})) |
49 | 6, 9, 27, 36, 28, 26, 42 | lspindpi 19986 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))) |
50 | 49 | simprd 499 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
51 | 50 | necomd 3006 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) ≠ (𝑁‘{𝑍})) |
52 | eqidd 2759 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉)) | |
53 | eqidd 2759 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53 | mapdh6aN 39346 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ∖ cdif 3857 ifcif 4423 {csn 4525 {cpr 4527 〈cotp 4533 ↦ cmpt 5116 ‘cfv 6340 ℩crio 7113 (class class class)co 7156 1st c1st 7697 2nd c2nd 7698 Basecbs 16555 +gcplusg 16637 0gc0g 16785 -gcsg 18185 LModclmod 19716 LSpanclspn 19825 HLchlt 36961 LHypclh 37595 DVecHcdvh 38689 LCDualclcd 39197 mapdcmpd 39235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-riotaBAD 36564 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-tpos 7908 df-undef 7955 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-sca 16653 df-vsca 16654 df-0g 16787 df-mre 16929 df-mrc 16930 df-acs 16932 df-proset 17618 df-poset 17636 df-plt 17648 df-lub 17664 df-glb 17665 df-join 17666 df-meet 17667 df-p0 17729 df-p1 17730 df-lat 17736 df-clat 17798 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-submnd 18037 df-grp 18186 df-minusg 18187 df-sbg 18188 df-subg 18357 df-cntz 18528 df-oppg 18555 df-lsm 18842 df-cmn 18989 df-abl 18990 df-mgp 19322 df-ur 19334 df-ring 19381 df-oppr 19458 df-dvdsr 19476 df-unit 19477 df-invr 19507 df-dvr 19518 df-drng 19586 df-lmod 19718 df-lss 19786 df-lsp 19826 df-lvec 19957 df-lsatoms 36587 df-lshyp 36588 df-lcv 36630 df-lfl 36669 df-lkr 36697 df-ldual 36735 df-oposet 36787 df-ol 36789 df-oml 36790 df-covers 36877 df-ats 36878 df-atl 36909 df-cvlat 36933 df-hlat 36962 df-llines 37109 df-lplanes 37110 df-lvols 37111 df-lines 37112 df-psubsp 37114 df-pmap 37115 df-padd 37407 df-lhyp 37599 df-laut 37600 df-ldil 37715 df-ltrn 37716 df-trl 37770 df-tgrp 38354 df-tendo 38366 df-edring 38368 df-dveca 38614 df-disoa 38640 df-dvech 38690 df-dib 38750 df-dic 38784 df-dih 38840 df-doch 38959 df-djh 39006 df-lcdual 39198 df-mapd 39236 |
This theorem is referenced by: mapdh6gN 39353 |
Copyright terms: Public domain | W3C validator |