Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6eN Structured version   Visualization version   GIF version

Theorem mapdh6eN 37814
Description: Lemmma for mapdh6N 37821. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6d.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6d.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdh6d.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6d.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6d.w (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh6d.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdh6eN (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   𝑤,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   + (𝑤)   (𝑥,𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑈(𝑥,𝑤)   𝐹(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)   𝑍(𝑤)

Proof of Theorem mapdh6eN
StepHypRef Expression
1 mapdh.q . 2 𝑄 = (0g𝐶)
2 mapdh.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . 2 𝐻 = (LHyp‘𝐾)
4 mapdh.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . 2 𝑉 = (Base‘𝑈)
7 mapdh.s . 2 = (-g𝑈)
8 mapdhc.o . 2 0 = (0g𝑈)
9 mapdh.n . 2 𝑁 = (LSpan‘𝑈)
10 mapdh.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . 2 𝐷 = (Base‘𝐶)
12 mapdh.r . 2 𝑅 = (-g𝐶)
13 mapdh.j . 2 𝐽 = (LSpan‘𝐶)
14 mapdh.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . 2 (𝜑𝐹𝐷)
16 mapdh.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdh.p . 2 + = (+g𝑈)
19 mapdh.a . 2 = (+g𝐶)
203, 5, 14dvhlmod 37184 . . . 4 (𝜑𝑈 ∈ LMod)
21 mapdh6d.w . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
2221eldifad 3810 . . . 4 (𝜑𝑤𝑉)
23 mapdh6d.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2423eldifad 3810 . . . 4 (𝜑𝑌𝑉)
256, 18lmodvacl 19240 . . . 4 ((𝑈 ∈ LMod ∧ 𝑤𝑉𝑌𝑉) → (𝑤 + 𝑌) ∈ 𝑉)
2620, 22, 24, 25syl3anc 1494 . . 3 (𝜑 → (𝑤 + 𝑌) ∈ 𝑉)
273, 5, 14dvhlvec 37183 . . . . . 6 (𝜑𝑈 ∈ LVec)
2817eldifad 3810 . . . . . 6 (𝜑𝑋𝑉)
29 mapdh6d.wn . . . . . 6 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
306, 9, 27, 22, 28, 24, 29lspindpi 19499 . . . . 5 (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
3130simprd 491 . . . 4 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
326, 18, 8, 9, 20, 22, 24, 31lmodindp1 19380 . . 3 (𝜑 → (𝑤 + 𝑌) ≠ 0 )
33 eldifsn 4538 . . 3 ((𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑤 + 𝑌) ∈ 𝑉 ∧ (𝑤 + 𝑌) ≠ 0 ))
3426, 32, 33sylanbrc 578 . 2 (𝜑 → (𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }))
35 mapdh6d.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3635eldifad 3810 . . . . 5 (𝜑𝑍𝑉)
37 mapdh6d.yz . . . . . 6 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
38 mapdh6d.xn . . . . . . . 8 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
396, 9, 27, 28, 24, 36, 38lspindpi 19499 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
4039simpld 490 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
416, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp3 37796 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
426, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp4 37797 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)}))
436, 8, 9, 27, 17, 26, 36, 41, 42lspindp1 19500 . . . 4 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})))
4443simprd 491 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
45 prcom 4487 . . . . 5 {(𝑤 + 𝑌), 𝑍} = {𝑍, (𝑤 + 𝑌)}
4645fveq2i 6440 . . . 4 (𝑁‘{(𝑤 + 𝑌), 𝑍}) = (𝑁‘{𝑍, (𝑤 + 𝑌)})
4746eleq2i 2898 . . 3 (𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}) ↔ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))
4844, 47sylnibr 321 . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}))
496, 9, 27, 36, 28, 26, 42lspindpi 19499 . . . 4 (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)})))
5049simprd 491 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))
5150necomd 3054 . 2 (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) ≠ (𝑁‘{𝑍}))
52 eqidd 2826 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) = (𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩))
53 eqidd 2826 . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53mapdh6aN 37809 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, (𝑤 + 𝑌)⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  Vcvv 3414  cdif 3795  ifcif 4308  {csn 4399  {cpr 4401  cotp 4407  cmpt 4954  cfv 6127  crio 6870  (class class class)co 6910  1st c1st 7431  2nd c2nd 7432  Basecbs 16229  +gcplusg 16312  0gc0g 16460  -gcsg 17785  LModclmod 19226  LSpanclspn 19337  HLchlt 35424  LHypclh 36058  DVecHcdvh 37152  LCDualclcd 37660  mapdcmpd 37698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-riotaBAD 35027
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-ot 4408  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-undef 7669  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-0g 16462  df-mre 16606  df-mrc 16607  df-acs 16609  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cntz 18107  df-oppg 18133  df-lsm 18409  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-drng 19112  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lvec 19469  df-lsatoms 35050  df-lshyp 35051  df-lcv 35093  df-lfl 35132  df-lkr 35160  df-ldual 35198  df-oposet 35250  df-ol 35252  df-oml 35253  df-covers 35340  df-ats 35341  df-atl 35372  df-cvlat 35396  df-hlat 35425  df-llines 35572  df-lplanes 35573  df-lvols 35574  df-lines 35575  df-psubsp 35577  df-pmap 35578  df-padd 35870  df-lhyp 36062  df-laut 36063  df-ldil 36178  df-ltrn 36179  df-trl 36233  df-tgrp 36817  df-tendo 36829  df-edring 36831  df-dveca 37077  df-disoa 37103  df-dvech 37153  df-dib 37213  df-dic 37247  df-dih 37303  df-doch 37422  df-djh 37469  df-lcdual 37661  df-mapd 37699
This theorem is referenced by:  mapdh6gN  37816
  Copyright terms: Public domain W3C validator