| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6eN | Structured version Visualization version GIF version | ||
| Description: Lemmma for mapdh6N 41730. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh.s | ⊢ − = (-g‘𝑈) |
| mapdhc.o | ⊢ 0 = (0g‘𝑈) |
| mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh.p | ⊢ + = (+g‘𝑈) |
| mapdh.a | ⊢ ✚ = (+g‘𝐶) |
| mapdh6d.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| mapdh6d.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
| mapdh6d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh6d.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdh6d.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdh6d.wn | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| mapdh6eN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | mapdh.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 5 | mapdh.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | mapdh.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | mapdh.s | . 2 ⊢ − = (-g‘𝑈) | |
| 8 | mapdhc.o | . 2 ⊢ 0 = (0g‘𝑈) | |
| 9 | mapdh.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | mapdh.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 11 | mapdh.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
| 12 | mapdh.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
| 13 | mapdh.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 14 | mapdh.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdhc.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | mapdhcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 18 | mapdh.p | . 2 ⊢ + = (+g‘𝑈) | |
| 19 | mapdh.a | . 2 ⊢ ✚ = (+g‘𝐶) | |
| 20 | 3, 5, 14 | dvhlmod 41093 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 21 | mapdh6d.w | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
| 22 | 21 | eldifad 3915 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
| 23 | mapdh6d.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 24 | 23 | eldifad 3915 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 25 | 6, 18 | lmodvacl 20778 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑤 + 𝑌) ∈ 𝑉) |
| 26 | 20, 22, 24, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑤 + 𝑌) ∈ 𝑉) |
| 27 | 3, 5, 14 | dvhlvec 41092 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 28 | 17 | eldifad 3915 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 29 | mapdh6d.wn | . . . . . 6 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 30 | 6, 9, 27, 22, 28, 24, 29 | lspindpi 21039 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
| 31 | 30 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
| 32 | 6, 18, 8, 9, 20, 22, 24, 31 | lmodindp1 20917 | . . 3 ⊢ (𝜑 → (𝑤 + 𝑌) ≠ 0 ) |
| 33 | eldifsn 4737 | . . 3 ⊢ ((𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑤 + 𝑌) ∈ 𝑉 ∧ (𝑤 + 𝑌) ≠ 0 )) | |
| 34 | 26, 32, 33 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝑤 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
| 35 | mapdh6d.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 36 | 35 | eldifad 3915 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 37 | mapdh6d.yz | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
| 38 | mapdh6d.xn | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 39 | 6, 9, 27, 28, 24, 36, 38 | lspindpi 21039 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 40 | 39 | simpld 494 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 41 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp3 41705 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
| 42 | 6, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29 | mapdindp4 41706 | . . . . 5 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑤 + 𝑌)})) |
| 43 | 6, 8, 9, 27, 17, 26, 36, 41, 42 | lspindp1 21040 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)}))) |
| 44 | 43 | simprd 495 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})) |
| 45 | prcom 4684 | . . . . 5 ⊢ {(𝑤 + 𝑌), 𝑍} = {𝑍, (𝑤 + 𝑌)} | |
| 46 | 45 | fveq2i 6825 | . . . 4 ⊢ (𝑁‘{(𝑤 + 𝑌), 𝑍}) = (𝑁‘{𝑍, (𝑤 + 𝑌)}) |
| 47 | 46 | eleq2i 2820 | . . 3 ⊢ (𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍}) ↔ 𝑋 ∈ (𝑁‘{𝑍, (𝑤 + 𝑌)})) |
| 48 | 44, 47 | sylnibr 329 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{(𝑤 + 𝑌), 𝑍})) |
| 49 | 6, 9, 27, 36, 28, 26, 42 | lspindpi 21039 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)}))) |
| 50 | 49 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{(𝑤 + 𝑌)})) |
| 51 | 50 | necomd 2980 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑤 + 𝑌)}) ≠ (𝑁‘{𝑍})) |
| 52 | eqidd 2730 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) = (𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉)) | |
| 53 | eqidd 2730 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
| 54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53 | mapdh6aN 41718 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, ((𝑤 + 𝑌) + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, (𝑤 + 𝑌)〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∖ cdif 3900 ifcif 4476 {csn 4577 {cpr 4579 〈cotp 4585 ↦ cmpt 5173 ‘cfv 6482 ℩crio 7305 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 Basecbs 17120 +gcplusg 17161 0gc0g 17343 -gcsg 18814 LModclmod 20763 LSpanclspn 20874 HLchlt 39333 LHypclh 39967 DVecHcdvh 41061 LCDualclcd 41569 mapdcmpd 41607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-riotaBAD 38936 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-undef 8206 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lsatoms 38959 df-lshyp 38960 df-lcv 39002 df-lfl 39041 df-lkr 39069 df-ldual 39107 df-oposet 39159 df-ol 39161 df-oml 39162 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 df-lcdual 41570 df-mapd 41608 |
| This theorem is referenced by: mapdh6gN 41725 |
| Copyright terms: Public domain | W3C validator |