![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilphllem | Structured version Visualization version GIF version |
Description: Lemma for hlhil 25496. (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilphllem.f | ⊢ 𝐹 = (Scalar‘𝑈) |
hlhilphllem.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilphllem.v | ⊢ 𝑉 = (Base‘𝐿) |
hlhilphllem.a | ⊢ + = (+g‘𝐿) |
hlhilphllem.s | ⊢ · = ( ·𝑠 ‘𝐿) |
hlhilphllem.r | ⊢ 𝑅 = (Scalar‘𝐿) |
hlhilphllem.b | ⊢ 𝐵 = (Base‘𝑅) |
hlhilphllem.p | ⊢ ⨣ = (+g‘𝑅) |
hlhilphllem.t | ⊢ × = (.r‘𝑅) |
hlhilphllem.q | ⊢ 𝑄 = (0g‘𝑅) |
hlhilphllem.z | ⊢ 0 = (0g‘𝐿) |
hlhilphllem.i | ⊢ , = (·𝑖‘𝑈) |
hlhilphllem.j | ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) |
hlhilphllem.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hlhilphllem.e | ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) |
Ref | Expression |
---|---|
hlhilphllem | ⊢ (𝜑 → 𝑈 ∈ PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhilphllem.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
3 | hlhilphl.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | hlhilphllem.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
5 | hlhilphllem.v | . . 3 ⊢ 𝑉 = (Base‘𝐿) | |
6 | 1, 2, 3, 4, 5 | hlhilbase 41893 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
7 | hlhilphllem.a | . . 3 ⊢ + = (+g‘𝐿) | |
8 | 1, 2, 3, 4, 7 | hlhilplus 41894 | . 2 ⊢ (𝜑 → + = (+g‘𝑈)) |
9 | hlhilphllem.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐿) | |
10 | 1, 4, 9, 2, 3 | hlhilvsca 41908 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
11 | hlhilphllem.i | . . 3 ⊢ , = (·𝑖‘𝑈) | |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
13 | hlhilphllem.z | . . 3 ⊢ 0 = (0g‘𝐿) | |
14 | 1, 4, 2, 3, 13 | hlhil0 41916 | . 2 ⊢ (𝜑 → 0 = (0g‘𝑈)) |
15 | hlhilphllem.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑈) | |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑈)) |
17 | hlhilphllem.r | . . 3 ⊢ 𝑅 = (Scalar‘𝐿) | |
18 | hlhilphllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
19 | 1, 4, 17, 2, 15, 3, 18 | hlhilsbase2 41903 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
20 | hlhilphllem.p | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
21 | 1, 4, 17, 2, 15, 3, 20 | hlhilsplus2 41904 | . 2 ⊢ (𝜑 → ⨣ = (+g‘𝐹)) |
22 | hlhilphllem.t | . . 3 ⊢ × = (.r‘𝑅) | |
23 | 1, 4, 17, 2, 15, 3, 22 | hlhilsmul2 41905 | . 2 ⊢ (𝜑 → × = (.r‘𝐹)) |
24 | hlhilphllem.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
25 | 1, 2, 15, 24, 3 | hlhilnvl 41911 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝐹)) |
26 | hlhilphllem.q | . . 3 ⊢ 𝑄 = (0g‘𝑅) | |
27 | 1, 4, 17, 2, 15, 3, 26 | hlhils0 41906 | . 2 ⊢ (𝜑 → 𝑄 = (0g‘𝐹)) |
28 | 1, 2, 3 | hlhillvec 41912 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
29 | 1, 2, 3, 15 | hlhilsrng 41915 | . 2 ⊢ (𝜑 → 𝐹 ∈ *-Ring) |
30 | hlhilphllem.j | . . . 4 ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) | |
31 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
32 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
33 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
34 | 1, 4, 5, 30, 2, 31, 11, 32, 33 | hlhilipval 41910 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) = ((𝐽‘𝑏)‘𝑎)) |
35 | 1, 4, 5, 17, 18, 30, 31, 32, 33 | hdmapipcl 41862 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐽‘𝑏)‘𝑎) ∈ 𝐵) |
36 | 34, 35 | eqeltrd 2844 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) ∈ 𝐵) |
37 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
38 | simp31 1209 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
39 | simp32 1210 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
40 | simp33 1211 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑐 ∈ 𝑉) | |
41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑑 ∈ 𝐵) | |
42 | 1, 4, 5, 7, 9, 17, 18, 20, 22, 30, 37, 38, 39, 40, 41 | hdmapln1 41863 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
43 | 1, 4, 3 | dvhlmod 41067 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ LMod) |
44 | 43 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝐿 ∈ LMod) |
45 | 5, 17, 9, 18 | lmodvscl 20898 | . . . . . 6 ⊢ ((𝐿 ∈ LMod ∧ 𝑑 ∈ 𝐵 ∧ 𝑎 ∈ 𝑉) → (𝑑 · 𝑎) ∈ 𝑉) |
46 | 44, 41, 38, 45 | syl3anc 1371 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 · 𝑎) ∈ 𝑉) |
47 | 5, 7 | lmodvacl 20895 | . . . . 5 ⊢ ((𝐿 ∈ LMod ∧ (𝑑 · 𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
48 | 44, 46, 39, 47 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
49 | 1, 4, 5, 30, 2, 37, 11, 48, 40 | hlhilipval 41910 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏))) |
50 | 1, 4, 5, 30, 2, 37, 11, 38, 40 | hlhilipval 41910 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 , 𝑐) = ((𝐽‘𝑐)‘𝑎)) |
51 | 50 | oveq2d 7464 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 × (𝑎 , 𝑐)) = (𝑑 × ((𝐽‘𝑐)‘𝑎))) |
52 | 1, 4, 5, 30, 2, 37, 11, 39, 40 | hlhilipval 41910 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑏 , 𝑐) = ((𝐽‘𝑐)‘𝑏)) |
53 | 51, 52 | oveq12d 7466 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
54 | 42, 49, 53 | 3eqtr4d 2790 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐))) |
55 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
56 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
57 | 1, 4, 5, 30, 2, 55, 11, 56, 56 | hlhilipval 41910 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑎 , 𝑎) = ((𝐽‘𝑎)‘𝑎)) |
58 | 57 | eqeq1d 2742 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ ((𝐽‘𝑎)‘𝑎) = 𝑄)) |
59 | 1, 4, 5, 13, 17, 26, 30, 55, 56 | hdmapip0 41872 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (((𝐽‘𝑎)‘𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
60 | 58, 59 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
61 | 60 | biimp3a 1469 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ (𝑎 , 𝑎) = 𝑄) → 𝑎 = 0 ) |
62 | 1, 4, 5, 30, 24, 31, 32, 33 | hdmapg 41887 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘((𝐽‘𝑏)‘𝑎)) = ((𝐽‘𝑎)‘𝑏)) |
63 | 34 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝐺‘((𝐽‘𝑏)‘𝑎))) |
64 | 1, 4, 5, 30, 2, 31, 11, 33, 32 | hlhilipval 41910 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑏 , 𝑎) = ((𝐽‘𝑎)‘𝑏)) |
65 | 62, 63, 64 | 3eqtr4d 2790 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝑏 , 𝑎)) |
66 | 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 28, 29, 36, 54, 61, 65 | isphld 21695 | 1 ⊢ (𝜑 → 𝑈 ∈ PreHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 ·𝑖cip 17316 0gc0g 17499 LModclmod 20880 PreHilcphl 21665 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 HDMapchdma 41749 HGMapchg 41840 HLHilchlh 41889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-ghm 19253 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-nzr 20539 df-subrg 20597 df-rlreg 20716 df-domn 20717 df-drng 20753 df-staf 20862 df-srng 20863 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lmhm 21044 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-phl 21667 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 df-hvmap 41714 df-hdmap1 41750 df-hdmap 41751 df-hgmap 41841 df-hlhil 41890 |
This theorem is referenced by: hlhilhillem 41921 |
Copyright terms: Public domain | W3C validator |