| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilphllem | Structured version Visualization version GIF version | ||
| Description: Lemma for hlhil 25371. (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilphllem.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| hlhilphllem.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilphllem.v | ⊢ 𝑉 = (Base‘𝐿) |
| hlhilphllem.a | ⊢ + = (+g‘𝐿) |
| hlhilphllem.s | ⊢ · = ( ·𝑠 ‘𝐿) |
| hlhilphllem.r | ⊢ 𝑅 = (Scalar‘𝐿) |
| hlhilphllem.b | ⊢ 𝐵 = (Base‘𝑅) |
| hlhilphllem.p | ⊢ ⨣ = (+g‘𝑅) |
| hlhilphllem.t | ⊢ × = (.r‘𝑅) |
| hlhilphllem.q | ⊢ 𝑄 = (0g‘𝑅) |
| hlhilphllem.z | ⊢ 0 = (0g‘𝐿) |
| hlhilphllem.i | ⊢ , = (·𝑖‘𝑈) |
| hlhilphllem.j | ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) |
| hlhilphllem.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hlhilphllem.e | ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) |
| Ref | Expression |
|---|---|
| hlhilphllem | ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilphl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hlhilphllem.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 3 | hlhilphl.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | hlhilphllem.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hlhilphllem.v | . . 3 ⊢ 𝑉 = (Base‘𝐿) | |
| 6 | 1, 2, 3, 4, 5 | hlhilbase 41981 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
| 7 | hlhilphllem.a | . . 3 ⊢ + = (+g‘𝐿) | |
| 8 | 1, 2, 3, 4, 7 | hlhilplus 41982 | . 2 ⊢ (𝜑 → + = (+g‘𝑈)) |
| 9 | hlhilphllem.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐿) | |
| 10 | 1, 4, 9, 2, 3 | hlhilvsca 41992 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
| 11 | hlhilphllem.i | . . 3 ⊢ , = (·𝑖‘𝑈) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
| 13 | hlhilphllem.z | . . 3 ⊢ 0 = (0g‘𝐿) | |
| 14 | 1, 4, 2, 3, 13 | hlhil0 42000 | . 2 ⊢ (𝜑 → 0 = (0g‘𝑈)) |
| 15 | hlhilphllem.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑈)) |
| 17 | hlhilphllem.r | . . 3 ⊢ 𝑅 = (Scalar‘𝐿) | |
| 18 | hlhilphllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 1, 4, 17, 2, 15, 3, 18 | hlhilsbase2 41987 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
| 20 | hlhilphllem.p | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
| 21 | 1, 4, 17, 2, 15, 3, 20 | hlhilsplus2 41988 | . 2 ⊢ (𝜑 → ⨣ = (+g‘𝐹)) |
| 22 | hlhilphllem.t | . . 3 ⊢ × = (.r‘𝑅) | |
| 23 | 1, 4, 17, 2, 15, 3, 22 | hlhilsmul2 41989 | . 2 ⊢ (𝜑 → × = (.r‘𝐹)) |
| 24 | hlhilphllem.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 25 | 1, 2, 15, 24, 3 | hlhilnvl 41995 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝐹)) |
| 26 | hlhilphllem.q | . . 3 ⊢ 𝑄 = (0g‘𝑅) | |
| 27 | 1, 4, 17, 2, 15, 3, 26 | hlhils0 41990 | . 2 ⊢ (𝜑 → 𝑄 = (0g‘𝐹)) |
| 28 | 1, 2, 3 | hlhillvec 41996 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 29 | 1, 2, 3, 15 | hlhilsrng 41999 | . 2 ⊢ (𝜑 → 𝐹 ∈ *-Ring) |
| 30 | hlhilphllem.j | . . . 4 ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) | |
| 31 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 33 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
| 34 | 1, 4, 5, 30, 2, 31, 11, 32, 33 | hlhilipval 41994 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) = ((𝐽‘𝑏)‘𝑎)) |
| 35 | 1, 4, 5, 17, 18, 30, 31, 32, 33 | hdmapipcl 41950 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐽‘𝑏)‘𝑎) ∈ 𝐵) |
| 36 | 34, 35 | eqeltrd 2831 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) ∈ 𝐵) |
| 37 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 38 | simp31 1210 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
| 39 | simp32 1211 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 40 | simp33 1212 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑐 ∈ 𝑉) | |
| 41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑑 ∈ 𝐵) | |
| 42 | 1, 4, 5, 7, 9, 17, 18, 20, 22, 30, 37, 38, 39, 40, 41 | hdmapln1 41951 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 43 | 1, 4, 3 | dvhlmod 41155 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ LMod) |
| 44 | 43 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝐿 ∈ LMod) |
| 45 | 5, 17, 9, 18 | lmodvscl 20812 | . . . . . 6 ⊢ ((𝐿 ∈ LMod ∧ 𝑑 ∈ 𝐵 ∧ 𝑎 ∈ 𝑉) → (𝑑 · 𝑎) ∈ 𝑉) |
| 46 | 44, 41, 38, 45 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 · 𝑎) ∈ 𝑉) |
| 47 | 5, 7 | lmodvacl 20809 | . . . . 5 ⊢ ((𝐿 ∈ LMod ∧ (𝑑 · 𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 48 | 44, 46, 39, 47 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 49 | 1, 4, 5, 30, 2, 37, 11, 48, 40 | hlhilipval 41994 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏))) |
| 50 | 1, 4, 5, 30, 2, 37, 11, 38, 40 | hlhilipval 41994 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 , 𝑐) = ((𝐽‘𝑐)‘𝑎)) |
| 51 | 50 | oveq2d 7362 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 × (𝑎 , 𝑐)) = (𝑑 × ((𝐽‘𝑐)‘𝑎))) |
| 52 | 1, 4, 5, 30, 2, 37, 11, 39, 40 | hlhilipval 41994 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑏 , 𝑐) = ((𝐽‘𝑐)‘𝑏)) |
| 53 | 51, 52 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 54 | 42, 49, 53 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐))) |
| 55 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 56 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 57 | 1, 4, 5, 30, 2, 55, 11, 56, 56 | hlhilipval 41994 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑎 , 𝑎) = ((𝐽‘𝑎)‘𝑎)) |
| 58 | 57 | eqeq1d 2733 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ ((𝐽‘𝑎)‘𝑎) = 𝑄)) |
| 59 | 1, 4, 5, 13, 17, 26, 30, 55, 56 | hdmapip0 41960 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (((𝐽‘𝑎)‘𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 60 | 58, 59 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 61 | 60 | biimp3a 1471 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ (𝑎 , 𝑎) = 𝑄) → 𝑎 = 0 ) |
| 62 | 1, 4, 5, 30, 24, 31, 32, 33 | hdmapg 41975 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘((𝐽‘𝑏)‘𝑎)) = ((𝐽‘𝑎)‘𝑏)) |
| 63 | 34 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝐺‘((𝐽‘𝑏)‘𝑎))) |
| 64 | 1, 4, 5, 30, 2, 31, 11, 33, 32 | hlhilipval 41994 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑏 , 𝑎) = ((𝐽‘𝑎)‘𝑏)) |
| 65 | 62, 63, 64 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝑏 , 𝑎)) |
| 66 | 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 28, 29, 36, 54, 61, 65 | isphld 21592 | 1 ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 ·𝑖cip 17166 0gc0g 17343 LModclmod 20794 PreHilcphl 21562 HLchlt 39395 LHypclh 40029 DVecHcdvh 41123 HDMapchdma 41837 HGMapchg 41928 HLHilchlh 41977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 38998 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-ghm 19126 df-cntz 19230 df-oppg 19259 df-lsm 19549 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-dvr 20320 df-rhm 20391 df-nzr 20429 df-subrg 20486 df-rlreg 20610 df-domn 20611 df-drng 20647 df-staf 20755 df-srng 20756 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lmhm 20957 df-lvec 21038 df-sra 21108 df-rgmod 21109 df-phl 21564 df-lsatoms 39021 df-lshyp 39022 df-lcv 39064 df-lfl 39103 df-lkr 39131 df-ldual 39169 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-llines 39543 df-lplanes 39544 df-lvols 39545 df-lines 39546 df-psubsp 39548 df-pmap 39549 df-padd 39841 df-lhyp 40033 df-laut 40034 df-ldil 40149 df-ltrn 40150 df-trl 40204 df-tgrp 40788 df-tendo 40800 df-edring 40802 df-dveca 41048 df-disoa 41074 df-dvech 41124 df-dib 41184 df-dic 41218 df-dih 41274 df-doch 41393 df-djh 41440 df-lcdual 41632 df-mapd 41670 df-hvmap 41802 df-hdmap1 41838 df-hdmap 41839 df-hgmap 41929 df-hlhil 41978 |
| This theorem is referenced by: hlhilhillem 42005 |
| Copyright terms: Public domain | W3C validator |