| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilphllem | Structured version Visualization version GIF version | ||
| Description: Lemma for hlhil 25343. (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilphllem.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| hlhilphllem.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilphllem.v | ⊢ 𝑉 = (Base‘𝐿) |
| hlhilphllem.a | ⊢ + = (+g‘𝐿) |
| hlhilphllem.s | ⊢ · = ( ·𝑠 ‘𝐿) |
| hlhilphllem.r | ⊢ 𝑅 = (Scalar‘𝐿) |
| hlhilphllem.b | ⊢ 𝐵 = (Base‘𝑅) |
| hlhilphllem.p | ⊢ ⨣ = (+g‘𝑅) |
| hlhilphllem.t | ⊢ × = (.r‘𝑅) |
| hlhilphllem.q | ⊢ 𝑄 = (0g‘𝑅) |
| hlhilphllem.z | ⊢ 0 = (0g‘𝐿) |
| hlhilphllem.i | ⊢ , = (·𝑖‘𝑈) |
| hlhilphllem.j | ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) |
| hlhilphllem.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hlhilphllem.e | ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) |
| Ref | Expression |
|---|---|
| hlhilphllem | ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilphl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hlhilphllem.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 3 | hlhilphl.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | hlhilphllem.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hlhilphllem.v | . . 3 ⊢ 𝑉 = (Base‘𝐿) | |
| 6 | 1, 2, 3, 4, 5 | hlhilbase 41930 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
| 7 | hlhilphllem.a | . . 3 ⊢ + = (+g‘𝐿) | |
| 8 | 1, 2, 3, 4, 7 | hlhilplus 41931 | . 2 ⊢ (𝜑 → + = (+g‘𝑈)) |
| 9 | hlhilphllem.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐿) | |
| 10 | 1, 4, 9, 2, 3 | hlhilvsca 41941 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
| 11 | hlhilphllem.i | . . 3 ⊢ , = (·𝑖‘𝑈) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
| 13 | hlhilphllem.z | . . 3 ⊢ 0 = (0g‘𝐿) | |
| 14 | 1, 4, 2, 3, 13 | hlhil0 41949 | . 2 ⊢ (𝜑 → 0 = (0g‘𝑈)) |
| 15 | hlhilphllem.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑈)) |
| 17 | hlhilphllem.r | . . 3 ⊢ 𝑅 = (Scalar‘𝐿) | |
| 18 | hlhilphllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 1, 4, 17, 2, 15, 3, 18 | hlhilsbase2 41936 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
| 20 | hlhilphllem.p | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
| 21 | 1, 4, 17, 2, 15, 3, 20 | hlhilsplus2 41937 | . 2 ⊢ (𝜑 → ⨣ = (+g‘𝐹)) |
| 22 | hlhilphllem.t | . . 3 ⊢ × = (.r‘𝑅) | |
| 23 | 1, 4, 17, 2, 15, 3, 22 | hlhilsmul2 41938 | . 2 ⊢ (𝜑 → × = (.r‘𝐹)) |
| 24 | hlhilphllem.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 25 | 1, 2, 15, 24, 3 | hlhilnvl 41944 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝐹)) |
| 26 | hlhilphllem.q | . . 3 ⊢ 𝑄 = (0g‘𝑅) | |
| 27 | 1, 4, 17, 2, 15, 3, 26 | hlhils0 41939 | . 2 ⊢ (𝜑 → 𝑄 = (0g‘𝐹)) |
| 28 | 1, 2, 3 | hlhillvec 41945 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 29 | 1, 2, 3, 15 | hlhilsrng 41948 | . 2 ⊢ (𝜑 → 𝐹 ∈ *-Ring) |
| 30 | hlhilphllem.j | . . . 4 ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) | |
| 31 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 33 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
| 34 | 1, 4, 5, 30, 2, 31, 11, 32, 33 | hlhilipval 41943 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) = ((𝐽‘𝑏)‘𝑎)) |
| 35 | 1, 4, 5, 17, 18, 30, 31, 32, 33 | hdmapipcl 41899 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐽‘𝑏)‘𝑎) ∈ 𝐵) |
| 36 | 34, 35 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) ∈ 𝐵) |
| 37 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 38 | simp31 1210 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
| 39 | simp32 1211 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 40 | simp33 1212 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑐 ∈ 𝑉) | |
| 41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑑 ∈ 𝐵) | |
| 42 | 1, 4, 5, 7, 9, 17, 18, 20, 22, 30, 37, 38, 39, 40, 41 | hdmapln1 41900 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 43 | 1, 4, 3 | dvhlmod 41104 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ LMod) |
| 44 | 43 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝐿 ∈ LMod) |
| 45 | 5, 17, 9, 18 | lmodvscl 20784 | . . . . . 6 ⊢ ((𝐿 ∈ LMod ∧ 𝑑 ∈ 𝐵 ∧ 𝑎 ∈ 𝑉) → (𝑑 · 𝑎) ∈ 𝑉) |
| 46 | 44, 41, 38, 45 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 · 𝑎) ∈ 𝑉) |
| 47 | 5, 7 | lmodvacl 20781 | . . . . 5 ⊢ ((𝐿 ∈ LMod ∧ (𝑑 · 𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 48 | 44, 46, 39, 47 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 49 | 1, 4, 5, 30, 2, 37, 11, 48, 40 | hlhilipval 41943 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏))) |
| 50 | 1, 4, 5, 30, 2, 37, 11, 38, 40 | hlhilipval 41943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 , 𝑐) = ((𝐽‘𝑐)‘𝑎)) |
| 51 | 50 | oveq2d 7403 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 × (𝑎 , 𝑐)) = (𝑑 × ((𝐽‘𝑐)‘𝑎))) |
| 52 | 1, 4, 5, 30, 2, 37, 11, 39, 40 | hlhilipval 41943 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑏 , 𝑐) = ((𝐽‘𝑐)‘𝑏)) |
| 53 | 51, 52 | oveq12d 7405 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 54 | 42, 49, 53 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐))) |
| 55 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 56 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 57 | 1, 4, 5, 30, 2, 55, 11, 56, 56 | hlhilipval 41943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑎 , 𝑎) = ((𝐽‘𝑎)‘𝑎)) |
| 58 | 57 | eqeq1d 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ ((𝐽‘𝑎)‘𝑎) = 𝑄)) |
| 59 | 1, 4, 5, 13, 17, 26, 30, 55, 56 | hdmapip0 41909 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (((𝐽‘𝑎)‘𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 60 | 58, 59 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 61 | 60 | biimp3a 1471 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ (𝑎 , 𝑎) = 𝑄) → 𝑎 = 0 ) |
| 62 | 1, 4, 5, 30, 24, 31, 32, 33 | hdmapg 41924 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘((𝐽‘𝑏)‘𝑎)) = ((𝐽‘𝑎)‘𝑏)) |
| 63 | 34 | fveq2d 6862 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝐺‘((𝐽‘𝑏)‘𝑎))) |
| 64 | 1, 4, 5, 30, 2, 31, 11, 33, 32 | hlhilipval 41943 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑏 , 𝑎) = ((𝐽‘𝑎)‘𝑏)) |
| 65 | 62, 63, 64 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝑏 , 𝑎)) |
| 66 | 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 28, 29, 36, 54, 61, 65 | isphld 21563 | 1 ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 ·𝑖cip 17225 0gc0g 17402 LModclmod 20766 PreHilcphl 21533 HLchlt 39343 LHypclh 39978 DVecHcdvh 41072 HDMapchdma 41786 HGMapchg 41877 HLHilchlh 41926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mre 17547 df-mrc 17548 df-acs 17550 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-nzr 20422 df-subrg 20479 df-rlreg 20603 df-domn 20604 df-drng 20640 df-staf 20748 df-srng 20749 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-phl 21535 df-lsatoms 38969 df-lshyp 38970 df-lcv 39012 df-lfl 39051 df-lkr 39079 df-ldual 39117 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tgrp 40737 df-tendo 40749 df-edring 40751 df-dveca 40997 df-disoa 41023 df-dvech 41073 df-dib 41133 df-dic 41167 df-dih 41223 df-doch 41342 df-djh 41389 df-lcdual 41581 df-mapd 41619 df-hvmap 41751 df-hdmap1 41787 df-hdmap 41788 df-hgmap 41878 df-hlhil 41927 |
| This theorem is referenced by: hlhilhillem 41954 |
| Copyright terms: Public domain | W3C validator |