Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilphllem Structured version   Visualization version   GIF version

Theorem hlhilphllem 39082
 Description: Lemma for hlhil 24038. (Contributed by NM, 23-Jun-2015.)
Hypotheses
Ref Expression
hlhilphl.h 𝐻 = (LHyp‘𝐾)
hlhilphllem.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilphl.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilphllem.f 𝐹 = (Scalar‘𝑈)
hlhilphllem.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilphllem.v 𝑉 = (Base‘𝐿)
hlhilphllem.a + = (+g𝐿)
hlhilphllem.s · = ( ·𝑠𝐿)
hlhilphllem.r 𝑅 = (Scalar‘𝐿)
hlhilphllem.b 𝐵 = (Base‘𝑅)
hlhilphllem.p = (+g𝑅)
hlhilphllem.t × = (.r𝑅)
hlhilphllem.q 𝑄 = (0g𝑅)
hlhilphllem.z 0 = (0g𝐿)
hlhilphllem.i , = (·𝑖𝑈)
hlhilphllem.j 𝐽 = ((HDMap‘𝐾)‘𝑊)
hlhilphllem.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hlhilphllem.e 𝐸 = (𝑥𝑉, 𝑦𝑉 ↦ ((𝐽𝑦)‘𝑥))
Assertion
Ref Expression
hlhilphllem (𝜑𝑈 ∈ PreHil)
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝑈   𝑥,𝑊,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   · (𝑥,𝑦)   × (𝑥,𝑦)   𝑈(𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   , (𝑥,𝑦)   𝐿(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem hlhilphllem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilphl.h . . 3 𝐻 = (LHyp‘𝐾)
2 hlhilphllem.u . . 3 𝑈 = ((HLHil‘𝐾)‘𝑊)
3 hlhilphl.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 hlhilphllem.l . . 3 𝐿 = ((DVecH‘𝐾)‘𝑊)
5 hlhilphllem.v . . 3 𝑉 = (Base‘𝐿)
61, 2, 3, 4, 5hlhilbase 39059 . 2 (𝜑𝑉 = (Base‘𝑈))
7 hlhilphllem.a . . 3 + = (+g𝐿)
81, 2, 3, 4, 7hlhilplus 39060 . 2 (𝜑+ = (+g𝑈))
9 hlhilphllem.s . . 3 · = ( ·𝑠𝐿)
101, 4, 9, 2, 3hlhilvsca 39070 . 2 (𝜑· = ( ·𝑠𝑈))
11 hlhilphllem.i . . 3 , = (·𝑖𝑈)
1211a1i 11 . 2 (𝜑, = (·𝑖𝑈))
13 hlhilphllem.z . . 3 0 = (0g𝐿)
141, 4, 2, 3, 13hlhil0 39078 . 2 (𝜑0 = (0g𝑈))
15 hlhilphllem.f . . 3 𝐹 = (Scalar‘𝑈)
1615a1i 11 . 2 (𝜑𝐹 = (Scalar‘𝑈))
17 hlhilphllem.r . . 3 𝑅 = (Scalar‘𝐿)
18 hlhilphllem.b . . 3 𝐵 = (Base‘𝑅)
191, 4, 17, 2, 15, 3, 18hlhilsbase2 39065 . 2 (𝜑𝐵 = (Base‘𝐹))
20 hlhilphllem.p . . 3 = (+g𝑅)
211, 4, 17, 2, 15, 3, 20hlhilsplus2 39066 . 2 (𝜑 = (+g𝐹))
22 hlhilphllem.t . . 3 × = (.r𝑅)
231, 4, 17, 2, 15, 3, 22hlhilsmul2 39067 . 2 (𝜑× = (.r𝐹))
24 hlhilphllem.g . . 3 𝐺 = ((HGMap‘𝐾)‘𝑊)
251, 2, 15, 24, 3hlhilnvl 39073 . 2 (𝜑𝐺 = (*𝑟𝐹))
26 hlhilphllem.q . . 3 𝑄 = (0g𝑅)
271, 4, 17, 2, 15, 3, 26hlhils0 39068 . 2 (𝜑𝑄 = (0g𝐹))
281, 2, 3hlhillvec 39074 . 2 (𝜑𝑈 ∈ LVec)
291, 2, 3, 15hlhilsrng 39077 . 2 (𝜑𝐹 ∈ *-Ring)
30 hlhilphllem.j . . . 4 𝐽 = ((HDMap‘𝐾)‘𝑊)
3133ad2ant1 1127 . . . 4 ((𝜑𝑎𝑉𝑏𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32 simp2 1131 . . . 4 ((𝜑𝑎𝑉𝑏𝑉) → 𝑎𝑉)
33 simp3 1132 . . . 4 ((𝜑𝑎𝑉𝑏𝑉) → 𝑏𝑉)
341, 4, 5, 30, 2, 31, 11, 32, 33hlhilipval 39072 . . 3 ((𝜑𝑎𝑉𝑏𝑉) → (𝑎 , 𝑏) = ((𝐽𝑏)‘𝑎))
351, 4, 5, 17, 18, 30, 31, 32, 33hdmapipcl 39028 . . 3 ((𝜑𝑎𝑉𝑏𝑉) → ((𝐽𝑏)‘𝑎) ∈ 𝐵)
3634, 35eqeltrd 2911 . 2 ((𝜑𝑎𝑉𝑏𝑉) → (𝑎 , 𝑏) ∈ 𝐵)
3733ad2ant1 1127 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
38 simp31 1203 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → 𝑎𝑉)
39 simp32 1204 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → 𝑏𝑉)
40 simp33 1205 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → 𝑐𝑉)
41 simp2 1131 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → 𝑑𝐵)
421, 4, 5, 7, 9, 17, 18, 20, 22, 30, 37, 38, 39, 40, 41hdmapln1 39029 . . 3 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → ((𝐽𝑐)‘((𝑑 · 𝑎) + 𝑏)) = ((𝑑 × ((𝐽𝑐)‘𝑎)) ((𝐽𝑐)‘𝑏)))
431, 4, 3dvhlmod 38233 . . . . . 6 (𝜑𝐿 ∈ LMod)
44433ad2ant1 1127 . . . . 5 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → 𝐿 ∈ LMod)
455, 17, 9, 18lmodvscl 19643 . . . . . 6 ((𝐿 ∈ LMod ∧ 𝑑𝐵𝑎𝑉) → (𝑑 · 𝑎) ∈ 𝑉)
4644, 41, 38, 45syl3anc 1365 . . . . 5 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑑 · 𝑎) ∈ 𝑉)
475, 7lmodvacl 19640 . . . . 5 ((𝐿 ∈ LMod ∧ (𝑑 · 𝑎) ∈ 𝑉𝑏𝑉) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉)
4844, 46, 39, 47syl3anc 1365 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉)
491, 4, 5, 30, 2, 37, 11, 48, 40hlhilipval 39072 . . 3 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝐽𝑐)‘((𝑑 · 𝑎) + 𝑏)))
501, 4, 5, 30, 2, 37, 11, 38, 40hlhilipval 39072 . . . . 5 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑎 , 𝑐) = ((𝐽𝑐)‘𝑎))
5150oveq2d 7164 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑑 × (𝑎 , 𝑐)) = (𝑑 × ((𝐽𝑐)‘𝑎)))
521, 4, 5, 30, 2, 37, 11, 39, 40hlhilipval 39072 . . . 4 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑏 , 𝑐) = ((𝐽𝑐)‘𝑏))
5351, 52oveq12d 7166 . . 3 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → ((𝑑 × (𝑎 , 𝑐)) (𝑏 , 𝑐)) = ((𝑑 × ((𝐽𝑐)‘𝑎)) ((𝐽𝑐)‘𝑏)))
5442, 49, 533eqtr4d 2864 . 2 ((𝜑𝑑𝐵 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝑑 × (𝑎 , 𝑐)) (𝑏 , 𝑐)))
553adantr 483 . . . . . 6 ((𝜑𝑎𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
56 simpr 487 . . . . . 6 ((𝜑𝑎𝑉) → 𝑎𝑉)
571, 4, 5, 30, 2, 55, 11, 56, 56hlhilipval 39072 . . . . 5 ((𝜑𝑎𝑉) → (𝑎 , 𝑎) = ((𝐽𝑎)‘𝑎))
5857eqeq1d 2821 . . . 4 ((𝜑𝑎𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ ((𝐽𝑎)‘𝑎) = 𝑄))
591, 4, 5, 13, 17, 26, 30, 55, 56hdmapip0 39038 . . . 4 ((𝜑𝑎𝑉) → (((𝐽𝑎)‘𝑎) = 𝑄𝑎 = 0 ))
6058, 59bitrd 281 . . 3 ((𝜑𝑎𝑉) → ((𝑎 , 𝑎) = 𝑄𝑎 = 0 ))
6160biimp3a 1462 . 2 ((𝜑𝑎𝑉 ∧ (𝑎 , 𝑎) = 𝑄) → 𝑎 = 0 )
621, 4, 5, 30, 24, 31, 32, 33hdmapg 39053 . . 3 ((𝜑𝑎𝑉𝑏𝑉) → (𝐺‘((𝐽𝑏)‘𝑎)) = ((𝐽𝑎)‘𝑏))
6334fveq2d 6667 . . 3 ((𝜑𝑎𝑉𝑏𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝐺‘((𝐽𝑏)‘𝑎)))
641, 4, 5, 30, 2, 31, 11, 33, 32hlhilipval 39072 . . 3 ((𝜑𝑎𝑉𝑏𝑉) → (𝑏 , 𝑎) = ((𝐽𝑎)‘𝑏))
6562, 63, 643eqtr4d 2864 . 2 ((𝜑𝑎𝑉𝑏𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝑏 , 𝑎))
666, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 28, 29, 36, 54, 61, 65isphld 20790 1 (𝜑𝑈 ∈ PreHil)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ‘cfv 6348  (class class class)co 7148   ∈ cmpo 7150  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  ·𝑖cip 16562  0gc0g 16705  LModclmod 19626  PreHilcphl 20760  HLchlt 36473  LHypclh 37107  DVecHcdvh 38201  HDMapchdma 38915  HGMapchg 39006  HLHilchlh 39055 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36076 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-undef 7931  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-rnghom 19459  df-drng 19496  df-subrg 19525  df-staf 19608  df-srng 19609  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lmhm 19786  df-lvec 19867  df-sra 19936  df-rgmod 19937  df-phl 20762  df-lsatoms 36099  df-lshyp 36100  df-lcv 36142  df-lfl 36181  df-lkr 36209  df-ldual 36247  df-oposet 36299  df-ol 36301  df-oml 36302  df-covers 36389  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474  df-llines 36621  df-lplanes 36622  df-lvols 36623  df-lines 36624  df-psubsp 36626  df-pmap 36627  df-padd 36919  df-lhyp 37111  df-laut 37112  df-ldil 37227  df-ltrn 37228  df-trl 37282  df-tgrp 37866  df-tendo 37878  df-edring 37880  df-dveca 38126  df-disoa 38152  df-dvech 38202  df-dib 38262  df-dic 38296  df-dih 38352  df-doch 38471  df-djh 38518  df-lcdual 38710  df-mapd 38748  df-hvmap 38880  df-hdmap1 38916  df-hdmap 38917  df-hgmap 39007  df-hlhil 39056 This theorem is referenced by:  hlhilhillem  39083
 Copyright terms: Public domain W3C validator