| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilphllem | Structured version Visualization version GIF version | ||
| Description: Lemma for hlhil 25477. (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilphllem.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| hlhilphllem.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilphllem.v | ⊢ 𝑉 = (Base‘𝐿) |
| hlhilphllem.a | ⊢ + = (+g‘𝐿) |
| hlhilphllem.s | ⊢ · = ( ·𝑠 ‘𝐿) |
| hlhilphllem.r | ⊢ 𝑅 = (Scalar‘𝐿) |
| hlhilphllem.b | ⊢ 𝐵 = (Base‘𝑅) |
| hlhilphllem.p | ⊢ ⨣ = (+g‘𝑅) |
| hlhilphllem.t | ⊢ × = (.r‘𝑅) |
| hlhilphllem.q | ⊢ 𝑄 = (0g‘𝑅) |
| hlhilphllem.z | ⊢ 0 = (0g‘𝐿) |
| hlhilphllem.i | ⊢ , = (·𝑖‘𝑈) |
| hlhilphllem.j | ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) |
| hlhilphllem.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hlhilphllem.e | ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) |
| Ref | Expression |
|---|---|
| hlhilphllem | ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilphl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hlhilphllem.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 3 | hlhilphl.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | hlhilphllem.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hlhilphllem.v | . . 3 ⊢ 𝑉 = (Base‘𝐿) | |
| 6 | 1, 2, 3, 4, 5 | hlhilbase 41938 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
| 7 | hlhilphllem.a | . . 3 ⊢ + = (+g‘𝐿) | |
| 8 | 1, 2, 3, 4, 7 | hlhilplus 41939 | . 2 ⊢ (𝜑 → + = (+g‘𝑈)) |
| 9 | hlhilphllem.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐿) | |
| 10 | 1, 4, 9, 2, 3 | hlhilvsca 41953 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
| 11 | hlhilphllem.i | . . 3 ⊢ , = (·𝑖‘𝑈) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
| 13 | hlhilphllem.z | . . 3 ⊢ 0 = (0g‘𝐿) | |
| 14 | 1, 4, 2, 3, 13 | hlhil0 41961 | . 2 ⊢ (𝜑 → 0 = (0g‘𝑈)) |
| 15 | hlhilphllem.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑈)) |
| 17 | hlhilphllem.r | . . 3 ⊢ 𝑅 = (Scalar‘𝐿) | |
| 18 | hlhilphllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 1, 4, 17, 2, 15, 3, 18 | hlhilsbase2 41948 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
| 20 | hlhilphllem.p | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
| 21 | 1, 4, 17, 2, 15, 3, 20 | hlhilsplus2 41949 | . 2 ⊢ (𝜑 → ⨣ = (+g‘𝐹)) |
| 22 | hlhilphllem.t | . . 3 ⊢ × = (.r‘𝑅) | |
| 23 | 1, 4, 17, 2, 15, 3, 22 | hlhilsmul2 41950 | . 2 ⊢ (𝜑 → × = (.r‘𝐹)) |
| 24 | hlhilphllem.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 25 | 1, 2, 15, 24, 3 | hlhilnvl 41956 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝐹)) |
| 26 | hlhilphllem.q | . . 3 ⊢ 𝑄 = (0g‘𝑅) | |
| 27 | 1, 4, 17, 2, 15, 3, 26 | hlhils0 41951 | . 2 ⊢ (𝜑 → 𝑄 = (0g‘𝐹)) |
| 28 | 1, 2, 3 | hlhillvec 41957 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 29 | 1, 2, 3, 15 | hlhilsrng 41960 | . 2 ⊢ (𝜑 → 𝐹 ∈ *-Ring) |
| 30 | hlhilphllem.j | . . . 4 ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) | |
| 31 | 3 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | simp2 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 33 | simp3 1139 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
| 34 | 1, 4, 5, 30, 2, 31, 11, 32, 33 | hlhilipval 41955 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) = ((𝐽‘𝑏)‘𝑎)) |
| 35 | 1, 4, 5, 17, 18, 30, 31, 32, 33 | hdmapipcl 41907 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐽‘𝑏)‘𝑎) ∈ 𝐵) |
| 36 | 34, 35 | eqeltrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) ∈ 𝐵) |
| 37 | 3 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 38 | simp31 1210 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
| 39 | simp32 1211 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 40 | simp33 1212 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑐 ∈ 𝑉) | |
| 41 | simp2 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑑 ∈ 𝐵) | |
| 42 | 1, 4, 5, 7, 9, 17, 18, 20, 22, 30, 37, 38, 39, 40, 41 | hdmapln1 41908 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 43 | 1, 4, 3 | dvhlmod 41112 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ LMod) |
| 44 | 43 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝐿 ∈ LMod) |
| 45 | 5, 17, 9, 18 | lmodvscl 20876 | . . . . . 6 ⊢ ((𝐿 ∈ LMod ∧ 𝑑 ∈ 𝐵 ∧ 𝑎 ∈ 𝑉) → (𝑑 · 𝑎) ∈ 𝑉) |
| 46 | 44, 41, 38, 45 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 · 𝑎) ∈ 𝑉) |
| 47 | 5, 7 | lmodvacl 20873 | . . . . 5 ⊢ ((𝐿 ∈ LMod ∧ (𝑑 · 𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 48 | 44, 46, 39, 47 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 49 | 1, 4, 5, 30, 2, 37, 11, 48, 40 | hlhilipval 41955 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏))) |
| 50 | 1, 4, 5, 30, 2, 37, 11, 38, 40 | hlhilipval 41955 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 , 𝑐) = ((𝐽‘𝑐)‘𝑎)) |
| 51 | 50 | oveq2d 7447 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 × (𝑎 , 𝑐)) = (𝑑 × ((𝐽‘𝑐)‘𝑎))) |
| 52 | 1, 4, 5, 30, 2, 37, 11, 39, 40 | hlhilipval 41955 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑏 , 𝑐) = ((𝐽‘𝑐)‘𝑏)) |
| 53 | 51, 52 | oveq12d 7449 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 54 | 42, 49, 53 | 3eqtr4d 2787 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐))) |
| 55 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 56 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 57 | 1, 4, 5, 30, 2, 55, 11, 56, 56 | hlhilipval 41955 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑎 , 𝑎) = ((𝐽‘𝑎)‘𝑎)) |
| 58 | 57 | eqeq1d 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ ((𝐽‘𝑎)‘𝑎) = 𝑄)) |
| 59 | 1, 4, 5, 13, 17, 26, 30, 55, 56 | hdmapip0 41917 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (((𝐽‘𝑎)‘𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 60 | 58, 59 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 61 | 60 | biimp3a 1471 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ (𝑎 , 𝑎) = 𝑄) → 𝑎 = 0 ) |
| 62 | 1, 4, 5, 30, 24, 31, 32, 33 | hdmapg 41932 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘((𝐽‘𝑏)‘𝑎)) = ((𝐽‘𝑎)‘𝑏)) |
| 63 | 34 | fveq2d 6910 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝐺‘((𝐽‘𝑏)‘𝑎))) |
| 64 | 1, 4, 5, 30, 2, 31, 11, 33, 32 | hlhilipval 41955 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑏 , 𝑎) = ((𝐽‘𝑎)‘𝑏)) |
| 65 | 62, 63, 64 | 3eqtr4d 2787 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝑏 , 𝑎)) |
| 66 | 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 28, 29, 36, 54, 61, 65 | isphld 21672 | 1 ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 ·𝑖cip 17302 0gc0g 17484 LModclmod 20858 PreHilcphl 21642 HLchlt 39351 LHypclh 39986 DVecHcdvh 41080 HDMapchdma 41794 HGMapchg 41885 HLHilchlh 41934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-riotaBAD 38954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-undef 8298 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-0g 17486 df-mre 17629 df-mrc 17630 df-acs 17632 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-ghm 19231 df-cntz 19335 df-oppg 19364 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-rhm 20472 df-nzr 20513 df-subrg 20570 df-rlreg 20694 df-domn 20695 df-drng 20731 df-staf 20840 df-srng 20841 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-phl 21644 df-lsatoms 38977 df-lshyp 38978 df-lcv 39020 df-lfl 39059 df-lkr 39087 df-ldual 39125 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 df-tgrp 40745 df-tendo 40757 df-edring 40759 df-dveca 41005 df-disoa 41031 df-dvech 41081 df-dib 41141 df-dic 41175 df-dih 41231 df-doch 41350 df-djh 41397 df-lcdual 41589 df-mapd 41627 df-hvmap 41759 df-hdmap1 41795 df-hdmap 41796 df-hgmap 41886 df-hlhil 41935 |
| This theorem is referenced by: hlhilhillem 41966 |
| Copyright terms: Public domain | W3C validator |