| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilphllem | Structured version Visualization version GIF version | ||
| Description: Lemma for hlhil 25390. (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilphllem.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| hlhilphllem.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilphllem.v | ⊢ 𝑉 = (Base‘𝐿) |
| hlhilphllem.a | ⊢ + = (+g‘𝐿) |
| hlhilphllem.s | ⊢ · = ( ·𝑠 ‘𝐿) |
| hlhilphllem.r | ⊢ 𝑅 = (Scalar‘𝐿) |
| hlhilphllem.b | ⊢ 𝐵 = (Base‘𝑅) |
| hlhilphllem.p | ⊢ ⨣ = (+g‘𝑅) |
| hlhilphllem.t | ⊢ × = (.r‘𝑅) |
| hlhilphllem.q | ⊢ 𝑄 = (0g‘𝑅) |
| hlhilphllem.z | ⊢ 0 = (0g‘𝐿) |
| hlhilphllem.i | ⊢ , = (·𝑖‘𝑈) |
| hlhilphllem.j | ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) |
| hlhilphllem.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hlhilphllem.e | ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) |
| Ref | Expression |
|---|---|
| hlhilphllem | ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilphl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hlhilphllem.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 3 | hlhilphl.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | hlhilphllem.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hlhilphllem.v | . . 3 ⊢ 𝑉 = (Base‘𝐿) | |
| 6 | 1, 2, 3, 4, 5 | hlhilbase 42108 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
| 7 | hlhilphllem.a | . . 3 ⊢ + = (+g‘𝐿) | |
| 8 | 1, 2, 3, 4, 7 | hlhilplus 42109 | . 2 ⊢ (𝜑 → + = (+g‘𝑈)) |
| 9 | hlhilphllem.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐿) | |
| 10 | 1, 4, 9, 2, 3 | hlhilvsca 42119 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
| 11 | hlhilphllem.i | . . 3 ⊢ , = (·𝑖‘𝑈) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
| 13 | hlhilphllem.z | . . 3 ⊢ 0 = (0g‘𝐿) | |
| 14 | 1, 4, 2, 3, 13 | hlhil0 42127 | . 2 ⊢ (𝜑 → 0 = (0g‘𝑈)) |
| 15 | hlhilphllem.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑈)) |
| 17 | hlhilphllem.r | . . 3 ⊢ 𝑅 = (Scalar‘𝐿) | |
| 18 | hlhilphllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 1, 4, 17, 2, 15, 3, 18 | hlhilsbase2 42114 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
| 20 | hlhilphllem.p | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
| 21 | 1, 4, 17, 2, 15, 3, 20 | hlhilsplus2 42115 | . 2 ⊢ (𝜑 → ⨣ = (+g‘𝐹)) |
| 22 | hlhilphllem.t | . . 3 ⊢ × = (.r‘𝑅) | |
| 23 | 1, 4, 17, 2, 15, 3, 22 | hlhilsmul2 42116 | . 2 ⊢ (𝜑 → × = (.r‘𝐹)) |
| 24 | hlhilphllem.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 25 | 1, 2, 15, 24, 3 | hlhilnvl 42122 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝐹)) |
| 26 | hlhilphllem.q | . . 3 ⊢ 𝑄 = (0g‘𝑅) | |
| 27 | 1, 4, 17, 2, 15, 3, 26 | hlhils0 42117 | . 2 ⊢ (𝜑 → 𝑄 = (0g‘𝐹)) |
| 28 | 1, 2, 3 | hlhillvec 42123 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 29 | 1, 2, 3, 15 | hlhilsrng 42126 | . 2 ⊢ (𝜑 → 𝐹 ∈ *-Ring) |
| 30 | hlhilphllem.j | . . . 4 ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) | |
| 31 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 33 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
| 34 | 1, 4, 5, 30, 2, 31, 11, 32, 33 | hlhilipval 42121 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) = ((𝐽‘𝑏)‘𝑎)) |
| 35 | 1, 4, 5, 17, 18, 30, 31, 32, 33 | hdmapipcl 42077 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐽‘𝑏)‘𝑎) ∈ 𝐵) |
| 36 | 34, 35 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) ∈ 𝐵) |
| 37 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 38 | simp31 1210 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
| 39 | simp32 1211 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 40 | simp33 1212 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑐 ∈ 𝑉) | |
| 41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑑 ∈ 𝐵) | |
| 42 | 1, 4, 5, 7, 9, 17, 18, 20, 22, 30, 37, 38, 39, 40, 41 | hdmapln1 42078 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 43 | 1, 4, 3 | dvhlmod 41282 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ LMod) |
| 44 | 43 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝐿 ∈ LMod) |
| 45 | 5, 17, 9, 18 | lmodvscl 20820 | . . . . . 6 ⊢ ((𝐿 ∈ LMod ∧ 𝑑 ∈ 𝐵 ∧ 𝑎 ∈ 𝑉) → (𝑑 · 𝑎) ∈ 𝑉) |
| 46 | 44, 41, 38, 45 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 · 𝑎) ∈ 𝑉) |
| 47 | 5, 7 | lmodvacl 20817 | . . . . 5 ⊢ ((𝐿 ∈ LMod ∧ (𝑑 · 𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 48 | 44, 46, 39, 47 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 49 | 1, 4, 5, 30, 2, 37, 11, 48, 40 | hlhilipval 42121 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏))) |
| 50 | 1, 4, 5, 30, 2, 37, 11, 38, 40 | hlhilipval 42121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 , 𝑐) = ((𝐽‘𝑐)‘𝑎)) |
| 51 | 50 | oveq2d 7371 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 × (𝑎 , 𝑐)) = (𝑑 × ((𝐽‘𝑐)‘𝑎))) |
| 52 | 1, 4, 5, 30, 2, 37, 11, 39, 40 | hlhilipval 42121 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑏 , 𝑐) = ((𝐽‘𝑐)‘𝑏)) |
| 53 | 51, 52 | oveq12d 7373 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 54 | 42, 49, 53 | 3eqtr4d 2778 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐))) |
| 55 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 56 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 57 | 1, 4, 5, 30, 2, 55, 11, 56, 56 | hlhilipval 42121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑎 , 𝑎) = ((𝐽‘𝑎)‘𝑎)) |
| 58 | 57 | eqeq1d 2735 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ ((𝐽‘𝑎)‘𝑎) = 𝑄)) |
| 59 | 1, 4, 5, 13, 17, 26, 30, 55, 56 | hdmapip0 42087 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (((𝐽‘𝑎)‘𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 60 | 58, 59 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 61 | 60 | biimp3a 1471 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ (𝑎 , 𝑎) = 𝑄) → 𝑎 = 0 ) |
| 62 | 1, 4, 5, 30, 24, 31, 32, 33 | hdmapg 42102 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘((𝐽‘𝑏)‘𝑎)) = ((𝐽‘𝑎)‘𝑏)) |
| 63 | 34 | fveq2d 6835 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝐺‘((𝐽‘𝑏)‘𝑎))) |
| 64 | 1, 4, 5, 30, 2, 31, 11, 33, 32 | hlhilipval 42121 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑏 , 𝑎) = ((𝐽‘𝑎)‘𝑏)) |
| 65 | 62, 63, 64 | 3eqtr4d 2778 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝑏 , 𝑎)) |
| 66 | 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 28, 29, 36, 54, 61, 65 | isphld 21600 | 1 ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Basecbs 17127 +gcplusg 17168 .rcmulr 17169 Scalarcsca 17171 ·𝑠 cvsca 17172 ·𝑖cip 17173 0gc0g 17350 LModclmod 20802 PreHilcphl 21570 HLchlt 39522 LHypclh 40156 DVecHcdvh 41250 HDMapchdma 41964 HGMapchg 42055 HLHilchlh 42104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-0g 17352 df-mre 17496 df-mrc 17497 df-acs 17499 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-ghm 19133 df-cntz 19237 df-oppg 19266 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-rhm 20399 df-nzr 20437 df-subrg 20494 df-rlreg 20618 df-domn 20619 df-drng 20655 df-staf 20763 df-srng 20764 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lmhm 20965 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-phl 21572 df-lsatoms 39148 df-lshyp 39149 df-lcv 39191 df-lfl 39230 df-lkr 39258 df-ldual 39296 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 df-tgrp 40915 df-tendo 40927 df-edring 40929 df-dveca 41175 df-disoa 41201 df-dvech 41251 df-dib 41311 df-dic 41345 df-dih 41401 df-doch 41520 df-djh 41567 df-lcdual 41759 df-mapd 41797 df-hvmap 41929 df-hdmap1 41965 df-hdmap 41966 df-hgmap 42056 df-hlhil 42105 |
| This theorem is referenced by: hlhilhillem 42132 |
| Copyright terms: Public domain | W3C validator |