| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilphllem | Structured version Visualization version GIF version | ||
| Description: Lemma for hlhil 25350. (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilphllem.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| hlhilphllem.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilphllem.v | ⊢ 𝑉 = (Base‘𝐿) |
| hlhilphllem.a | ⊢ + = (+g‘𝐿) |
| hlhilphllem.s | ⊢ · = ( ·𝑠 ‘𝐿) |
| hlhilphllem.r | ⊢ 𝑅 = (Scalar‘𝐿) |
| hlhilphllem.b | ⊢ 𝐵 = (Base‘𝑅) |
| hlhilphllem.p | ⊢ ⨣ = (+g‘𝑅) |
| hlhilphllem.t | ⊢ × = (.r‘𝑅) |
| hlhilphllem.q | ⊢ 𝑄 = (0g‘𝑅) |
| hlhilphllem.z | ⊢ 0 = (0g‘𝐿) |
| hlhilphllem.i | ⊢ , = (·𝑖‘𝑈) |
| hlhilphllem.j | ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) |
| hlhilphllem.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hlhilphllem.e | ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) |
| Ref | Expression |
|---|---|
| hlhilphllem | ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilphl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hlhilphllem.u | . . 3 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 3 | hlhilphl.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | hlhilphllem.l | . . 3 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hlhilphllem.v | . . 3 ⊢ 𝑉 = (Base‘𝐿) | |
| 6 | 1, 2, 3, 4, 5 | hlhilbase 41937 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
| 7 | hlhilphllem.a | . . 3 ⊢ + = (+g‘𝐿) | |
| 8 | 1, 2, 3, 4, 7 | hlhilplus 41938 | . 2 ⊢ (𝜑 → + = (+g‘𝑈)) |
| 9 | hlhilphllem.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐿) | |
| 10 | 1, 4, 9, 2, 3 | hlhilvsca 41948 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
| 11 | hlhilphllem.i | . . 3 ⊢ , = (·𝑖‘𝑈) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
| 13 | hlhilphllem.z | . . 3 ⊢ 0 = (0g‘𝐿) | |
| 14 | 1, 4, 2, 3, 13 | hlhil0 41956 | . 2 ⊢ (𝜑 → 0 = (0g‘𝑈)) |
| 15 | hlhilphllem.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (Scalar‘𝑈)) |
| 17 | hlhilphllem.r | . . 3 ⊢ 𝑅 = (Scalar‘𝐿) | |
| 18 | hlhilphllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 19 | 1, 4, 17, 2, 15, 3, 18 | hlhilsbase2 41943 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) |
| 20 | hlhilphllem.p | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
| 21 | 1, 4, 17, 2, 15, 3, 20 | hlhilsplus2 41944 | . 2 ⊢ (𝜑 → ⨣ = (+g‘𝐹)) |
| 22 | hlhilphllem.t | . . 3 ⊢ × = (.r‘𝑅) | |
| 23 | 1, 4, 17, 2, 15, 3, 22 | hlhilsmul2 41945 | . 2 ⊢ (𝜑 → × = (.r‘𝐹)) |
| 24 | hlhilphllem.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 25 | 1, 2, 15, 24, 3 | hlhilnvl 41951 | . 2 ⊢ (𝜑 → 𝐺 = (*𝑟‘𝐹)) |
| 26 | hlhilphllem.q | . . 3 ⊢ 𝑄 = (0g‘𝑅) | |
| 27 | 1, 4, 17, 2, 15, 3, 26 | hlhils0 41946 | . 2 ⊢ (𝜑 → 𝑄 = (0g‘𝐹)) |
| 28 | 1, 2, 3 | hlhillvec 41952 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 29 | 1, 2, 3, 15 | hlhilsrng 41955 | . 2 ⊢ (𝜑 → 𝐹 ∈ *-Ring) |
| 30 | hlhilphllem.j | . . . 4 ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) | |
| 31 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 33 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → 𝑏 ∈ 𝑉) | |
| 34 | 1, 4, 5, 30, 2, 31, 11, 32, 33 | hlhilipval 41950 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) = ((𝐽‘𝑏)‘𝑎)) |
| 35 | 1, 4, 5, 17, 18, 30, 31, 32, 33 | hdmapipcl 41906 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝐽‘𝑏)‘𝑎) ∈ 𝐵) |
| 36 | 34, 35 | eqeltrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑎 , 𝑏) ∈ 𝐵) |
| 37 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 38 | simp31 1210 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑎 ∈ 𝑉) | |
| 39 | simp32 1211 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑏 ∈ 𝑉) | |
| 40 | simp33 1212 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑐 ∈ 𝑉) | |
| 41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝑑 ∈ 𝐵) | |
| 42 | 1, 4, 5, 7, 9, 17, 18, 20, 22, 30, 37, 38, 39, 40, 41 | hdmapln1 41907 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 43 | 1, 4, 3 | dvhlmod 41111 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ LMod) |
| 44 | 43 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → 𝐿 ∈ LMod) |
| 45 | 5, 17, 9, 18 | lmodvscl 20791 | . . . . . 6 ⊢ ((𝐿 ∈ LMod ∧ 𝑑 ∈ 𝐵 ∧ 𝑎 ∈ 𝑉) → (𝑑 · 𝑎) ∈ 𝑉) |
| 46 | 44, 41, 38, 45 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 · 𝑎) ∈ 𝑉) |
| 47 | 5, 7 | lmodvacl 20788 | . . . . 5 ⊢ ((𝐿 ∈ LMod ∧ (𝑑 · 𝑎) ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 48 | 44, 46, 39, 47 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 · 𝑎) + 𝑏) ∈ 𝑉) |
| 49 | 1, 4, 5, 30, 2, 37, 11, 48, 40 | hlhilipval 41950 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝐽‘𝑐)‘((𝑑 · 𝑎) + 𝑏))) |
| 50 | 1, 4, 5, 30, 2, 37, 11, 38, 40 | hlhilipval 41950 | . . . . 5 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑎 , 𝑐) = ((𝐽‘𝑐)‘𝑎)) |
| 51 | 50 | oveq2d 7406 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑑 × (𝑎 , 𝑐)) = (𝑑 × ((𝐽‘𝑐)‘𝑎))) |
| 52 | 1, 4, 5, 30, 2, 37, 11, 39, 40 | hlhilipval 41950 | . . . 4 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (𝑏 , 𝑐) = ((𝐽‘𝑐)‘𝑏)) |
| 53 | 51, 52 | oveq12d 7408 | . . 3 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐)) = ((𝑑 × ((𝐽‘𝑐)‘𝑎)) ⨣ ((𝐽‘𝑐)‘𝑏))) |
| 54 | 42, 49, 53 | 3eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑑 ∈ 𝐵 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) → (((𝑑 · 𝑎) + 𝑏) , 𝑐) = ((𝑑 × (𝑎 , 𝑐)) ⨣ (𝑏 , 𝑐))) |
| 55 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 56 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
| 57 | 1, 4, 5, 30, 2, 55, 11, 56, 56 | hlhilipval 41950 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑎 , 𝑎) = ((𝐽‘𝑎)‘𝑎)) |
| 58 | 57 | eqeq1d 2732 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ ((𝐽‘𝑎)‘𝑎) = 𝑄)) |
| 59 | 1, 4, 5, 13, 17, 26, 30, 55, 56 | hdmapip0 41916 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (((𝐽‘𝑎)‘𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 60 | 58, 59 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ((𝑎 , 𝑎) = 𝑄 ↔ 𝑎 = 0 )) |
| 61 | 60 | biimp3a 1471 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ (𝑎 , 𝑎) = 𝑄) → 𝑎 = 0 ) |
| 62 | 1, 4, 5, 30, 24, 31, 32, 33 | hdmapg 41931 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘((𝐽‘𝑏)‘𝑎)) = ((𝐽‘𝑎)‘𝑏)) |
| 63 | 34 | fveq2d 6865 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝐺‘((𝐽‘𝑏)‘𝑎))) |
| 64 | 1, 4, 5, 30, 2, 31, 11, 33, 32 | hlhilipval 41950 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝑏 , 𝑎) = ((𝐽‘𝑎)‘𝑏)) |
| 65 | 62, 63, 64 | 3eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → (𝐺‘(𝑎 , 𝑏)) = (𝑏 , 𝑎)) |
| 66 | 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 28, 29, 36, 54, 61, 65 | isphld 21570 | 1 ⊢ (𝜑 → 𝑈 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 ·𝑖cip 17232 0gc0g 17409 LModclmod 20773 PreHilcphl 21540 HLchlt 39350 LHypclh 39985 DVecHcdvh 41079 HDMapchdma 41793 HGMapchg 41884 HLHilchlh 41933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mre 17554 df-mrc 17555 df-acs 17557 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-ghm 19152 df-cntz 19256 df-oppg 19285 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20429 df-subrg 20486 df-rlreg 20610 df-domn 20611 df-drng 20647 df-staf 20755 df-srng 20756 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-phl 21542 df-lsatoms 38976 df-lshyp 38977 df-lcv 39019 df-lfl 39058 df-lkr 39086 df-ldual 39124 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tgrp 40744 df-tendo 40756 df-edring 40758 df-dveca 41004 df-disoa 41030 df-dvech 41080 df-dib 41140 df-dic 41174 df-dih 41230 df-doch 41349 df-djh 41396 df-lcdual 41588 df-mapd 41626 df-hvmap 41758 df-hdmap1 41794 df-hdmap 41795 df-hgmap 41885 df-hlhil 41934 |
| This theorem is referenced by: hlhilhillem 41961 |
| Copyright terms: Public domain | W3C validator |