Step | Hyp | Ref
| Expression |
1 | | hdmapinvlem3.h |
. . . 4
β’ π» = (LHypβπΎ) |
2 | | hdmapinvlem3.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
3 | | hdmapinvlem3.v |
. . . 4
β’ π = (Baseβπ) |
4 | | hdmapinvlem3.m |
. . . 4
β’ β =
(-gβπ) |
5 | | eqid 2737 |
. . . 4
β’
((LCDualβπΎ)βπ) = ((LCDualβπΎ)βπ) |
6 | | eqid 2737 |
. . . 4
β’
(-gβ((LCDualβπΎ)βπ)) =
(-gβ((LCDualβπΎ)βπ)) |
7 | | hdmapinvlem3.s |
. . . 4
β’ π = ((HDMapβπΎ)βπ) |
8 | | hdmapinvlem3.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
9 | 1, 2, 8 | dvhlmod 39576 |
. . . . 5
β’ (π β π β LMod) |
10 | | hdmapinvlem3.j |
. . . . 5
β’ (π β π½ β π΅) |
11 | | eqid 2737 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
12 | | eqid 2737 |
. . . . . . 7
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
13 | | eqid 2737 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
14 | | hdmapinvlem3.e |
. . . . . . 7
β’ πΈ = β¨( I βΎ
(BaseβπΎ)), ( I
βΎ ((LTrnβπΎ)βπ))β© |
15 | 1, 11, 12, 2, 3, 13, 14, 8 | dvheveccl 39578 |
. . . . . 6
β’ (π β πΈ β (π β {(0gβπ)})) |
16 | 15 | eldifad 3923 |
. . . . 5
β’ (π β πΈ β π) |
17 | | hdmapinvlem3.r |
. . . . . 6
β’ π
= (Scalarβπ) |
18 | | hdmapinvlem3.q |
. . . . . 6
β’ Β· = (
Β·π βπ) |
19 | | hdmapinvlem3.b |
. . . . . 6
β’ π΅ = (Baseβπ
) |
20 | 3, 17, 18, 19 | lmodvscl 20342 |
. . . . 5
β’ ((π β LMod β§ π½ β π΅ β§ πΈ β π) β (π½ Β· πΈ) β π) |
21 | 9, 10, 16, 20 | syl3anc 1372 |
. . . 4
β’ (π β (π½ Β· πΈ) β π) |
22 | 16 | snssd 4770 |
. . . . . 6
β’ (π β {πΈ} β π) |
23 | | hdmapinvlem3.o |
. . . . . . 7
β’ π = ((ocHβπΎ)βπ) |
24 | 1, 2, 3, 23 | dochssv 39821 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ {πΈ} β π) β (πβ{πΈ}) β π) |
25 | 8, 22, 24 | syl2anc 585 |
. . . . 5
β’ (π β (πβ{πΈ}) β π) |
26 | | hdmapinvlem3.d |
. . . . 5
β’ (π β π· β (πβ{πΈ})) |
27 | 25, 26 | sseldd 3946 |
. . . 4
β’ (π β π· β π) |
28 | 1, 2, 3, 4, 5, 6, 7, 8, 21, 27 | hdmapsub 40313 |
. . 3
β’ (π β (πβ((π½ Β· πΈ) β π·)) = ((πβ(π½ Β· πΈ))(-gβ((LCDualβπΎ)βπ))(πβπ·))) |
29 | 28 | fveq1d 6845 |
. 2
β’ (π β ((πβ((π½ Β· πΈ) β π·))β((πΌ Β· πΈ) + πΆ)) = (((πβ(π½ Β· πΈ))(-gβ((LCDualβπΎ)βπ))(πβπ·))β((πΌ Β· πΈ) + πΆ))) |
30 | | eqid 2737 |
. . . 4
β’
(-gβπ
) = (-gβπ
) |
31 | | eqid 2737 |
. . . 4
β’
(Baseβ((LCDualβπΎ)βπ)) = (Baseβ((LCDualβπΎ)βπ)) |
32 | 1, 2, 3, 5, 31, 7,
8, 21 | hdmapcl 40296 |
. . . 4
β’ (π β (πβ(π½ Β· πΈ)) β (Baseβ((LCDualβπΎ)βπ))) |
33 | 1, 2, 3, 5, 31, 7,
8, 27 | hdmapcl 40296 |
. . . 4
β’ (π β (πβπ·) β (Baseβ((LCDualβπΎ)βπ))) |
34 | | hdmapinvlem3.i |
. . . . . 6
β’ (π β πΌ β π΅) |
35 | 3, 17, 18, 19 | lmodvscl 20342 |
. . . . . 6
β’ ((π β LMod β§ πΌ β π΅ β§ πΈ β π) β (πΌ Β· πΈ) β π) |
36 | 9, 34, 16, 35 | syl3anc 1372 |
. . . . 5
β’ (π β (πΌ Β· πΈ) β π) |
37 | | hdmapinvlem3.c |
. . . . . 6
β’ (π β πΆ β (πβ{πΈ})) |
38 | 25, 37 | sseldd 3946 |
. . . . 5
β’ (π β πΆ β π) |
39 | | hdmapinvlem3.p |
. . . . . 6
β’ + =
(+gβπ) |
40 | 3, 39 | lmodvacl 20339 |
. . . . 5
β’ ((π β LMod β§ (πΌ Β· πΈ) β π β§ πΆ β π) β ((πΌ Β· πΈ) + πΆ) β π) |
41 | 9, 36, 38, 40 | syl3anc 1372 |
. . . 4
β’ (π β ((πΌ Β· πΈ) + πΆ) β π) |
42 | 1, 2, 3, 17, 30, 5, 31, 6, 8,
32, 33, 41 | lcdvsubval 40084 |
. . 3
β’ (π β (((πβ(π½ Β· πΈ))(-gβ((LCDualβπΎ)βπ))(πβπ·))β((πΌ Β· πΈ) + πΆ)) = (((πβ(π½ Β· πΈ))β((πΌ Β· πΈ) + πΆ))(-gβπ
)((πβπ·)β((πΌ Β· πΈ) + πΆ)))) |
43 | | eqid 2737 |
. . . . . 6
β’
(+gβπ
) = (+gβπ
) |
44 | 1, 2, 3, 39, 17, 43, 7, 8, 36, 38, 21 | hdmaplna1 40373 |
. . . . 5
β’ (π β ((πβ(π½ Β· πΈ))β((πΌ Β· πΈ) + πΆ)) = (((πβ(π½ Β· πΈ))β(πΌ Β· πΈ))(+gβπ
)((πβ(π½ Β· πΈ))βπΆ))) |
45 | | hdmapinvlem3.t |
. . . . . . . 8
β’ Γ =
(.rβπ
) |
46 | | hdmapinvlem3.g |
. . . . . . . 8
β’ πΊ = ((HGMapβπΎ)βπ) |
47 | 1, 2, 3, 18, 17, 19, 45, 7, 46, 8, 36, 16, 10 | hdmapglnm2 40377 |
. . . . . . 7
β’ (π β ((πβ(π½ Β· πΈ))β(πΌ Β· πΈ)) = (((πβπΈ)β(πΌ Β· πΈ)) Γ (πΊβπ½))) |
48 | 1, 2, 3, 18, 17, 19, 45, 7, 8, 16, 16, 34 | hdmaplnm1 40375 |
. . . . . . . . 9
β’ (π β ((πβπΈ)β(πΌ Β· πΈ)) = (πΌ Γ ((πβπΈ)βπΈ))) |
49 | | eqid 2737 |
. . . . . . . . . . 11
β’
((HVMapβπΎ)βπ) = ((HVMapβπΎ)βπ) |
50 | | eqid 2737 |
. . . . . . . . . . 11
β’
(1rβπ
) = (1rβπ
) |
51 | 1, 14, 49, 7, 8, 2,
17, 50 | hdmapevec2 40302 |
. . . . . . . . . 10
β’ (π β ((πβπΈ)βπΈ) = (1rβπ
)) |
52 | 51 | oveq2d 7374 |
. . . . . . . . 9
β’ (π β (πΌ Γ ((πβπΈ)βπΈ)) = (πΌ Γ
(1rβπ
))) |
53 | 17 | lmodring 20333 |
. . . . . . . . . . 11
β’ (π β LMod β π
β Ring) |
54 | 9, 53 | syl 17 |
. . . . . . . . . 10
β’ (π β π
β Ring) |
55 | 19, 45, 50 | ringridm 19994 |
. . . . . . . . . 10
β’ ((π
β Ring β§ πΌ β π΅) β (πΌ Γ
(1rβπ
)) =
πΌ) |
56 | 54, 34, 55 | syl2anc 585 |
. . . . . . . . 9
β’ (π β (πΌ Γ
(1rβπ
)) =
πΌ) |
57 | 48, 52, 56 | 3eqtrd 2781 |
. . . . . . . 8
β’ (π β ((πβπΈ)β(πΌ Β· πΈ)) = πΌ) |
58 | 57 | oveq1d 7373 |
. . . . . . 7
β’ (π β (((πβπΈ)β(πΌ Β· πΈ)) Γ (πΊβπ½)) = (πΌ Γ (πΊβπ½))) |
59 | 47, 58 | eqtrd 2777 |
. . . . . 6
β’ (π β ((πβ(π½ Β· πΈ))β(πΌ Β· πΈ)) = (πΌ Γ (πΊβπ½))) |
60 | 1, 2, 3, 18, 17, 19, 45, 7, 46, 8, 38, 16, 10 | hdmapglnm2 40377 |
. . . . . . 7
β’ (π β ((πβ(π½ Β· πΈ))βπΆ) = (((πβπΈ)βπΆ) Γ (πΊβπ½))) |
61 | | hdmapinvlem3.z |
. . . . . . . . 9
β’ 0 =
(0gβπ
) |
62 | 1, 14, 23, 2, 3, 17, 19, 45, 61, 7, 8, 37 | hdmapinvlem1 40384 |
. . . . . . . 8
β’ (π β ((πβπΈ)βπΆ) = 0 ) |
63 | 62 | oveq1d 7373 |
. . . . . . 7
β’ (π β (((πβπΈ)βπΆ) Γ (πΊβπ½)) = ( 0 Γ (πΊβπ½))) |
64 | 1, 2, 17, 19, 46, 8, 10 | hgmapcl 40355 |
. . . . . . . 8
β’ (π β (πΊβπ½) β π΅) |
65 | 19, 45, 61 | ringlz 20012 |
. . . . . . . 8
β’ ((π
β Ring β§ (πΊβπ½) β π΅) β ( 0 Γ (πΊβπ½)) = 0 ) |
66 | 54, 64, 65 | syl2anc 585 |
. . . . . . 7
β’ (π β ( 0 Γ (πΊβπ½)) = 0 ) |
67 | 60, 63, 66 | 3eqtrd 2781 |
. . . . . 6
β’ (π β ((πβ(π½ Β· πΈ))βπΆ) = 0 ) |
68 | 59, 67 | oveq12d 7376 |
. . . . 5
β’ (π β (((πβ(π½ Β· πΈ))β(πΌ Β· πΈ))(+gβπ
)((πβ(π½ Β· πΈ))βπΆ)) = ((πΌ Γ (πΊβπ½))(+gβπ
) 0 )) |
69 | | ringgrp 19970 |
. . . . . . 7
β’ (π
β Ring β π
β Grp) |
70 | 54, 69 | syl 17 |
. . . . . 6
β’ (π β π
β Grp) |
71 | 17, 19, 45 | lmodmcl 20337 |
. . . . . . 7
β’ ((π β LMod β§ πΌ β π΅ β§ (πΊβπ½) β π΅) β (πΌ Γ (πΊβπ½)) β π΅) |
72 | 9, 34, 64, 71 | syl3anc 1372 |
. . . . . 6
β’ (π β (πΌ Γ (πΊβπ½)) β π΅) |
73 | 19, 43, 61 | grprid 18782 |
. . . . . 6
β’ ((π
β Grp β§ (πΌ Γ (πΊβπ½)) β π΅) β ((πΌ Γ (πΊβπ½))(+gβπ
) 0 ) = (πΌ Γ (πΊβπ½))) |
74 | 70, 72, 73 | syl2anc 585 |
. . . . 5
β’ (π β ((πΌ Γ (πΊβπ½))(+gβπ
) 0 ) = (πΌ Γ (πΊβπ½))) |
75 | 44, 68, 74 | 3eqtrd 2781 |
. . . 4
β’ (π β ((πβ(π½ Β· πΈ))β((πΌ Β· πΈ) + πΆ)) = (πΌ Γ (πΊβπ½))) |
76 | 1, 2, 3, 39, 17, 43, 7, 8, 36, 38, 27 | hdmaplna1 40373 |
. . . . 5
β’ (π β ((πβπ·)β((πΌ Β· πΈ) + πΆ)) = (((πβπ·)β(πΌ Β· πΈ))(+gβπ
)((πβπ·)βπΆ))) |
77 | 1, 2, 3, 18, 17, 19, 45, 7, 8, 16, 27, 34 | hdmaplnm1 40375 |
. . . . . . 7
β’ (π β ((πβπ·)β(πΌ Β· πΈ)) = (πΌ Γ ((πβπ·)βπΈ))) |
78 | 1, 14, 23, 2, 3, 17, 19, 45, 61, 7, 8, 26 | hdmapinvlem2 40385 |
. . . . . . . 8
β’ (π β ((πβπ·)βπΈ) = 0 ) |
79 | 78 | oveq2d 7374 |
. . . . . . 7
β’ (π β (πΌ Γ ((πβπ·)βπΈ)) = (πΌ Γ 0 )) |
80 | 19, 45, 61 | ringrz 20013 |
. . . . . . . 8
β’ ((π
β Ring β§ πΌ β π΅) β (πΌ Γ 0 ) = 0 ) |
81 | 54, 34, 80 | syl2anc 585 |
. . . . . . 7
β’ (π β (πΌ Γ 0 ) = 0 ) |
82 | 77, 79, 81 | 3eqtrrd 2782 |
. . . . . 6
β’ (π β 0 = ((πβπ·)β(πΌ Β· πΈ))) |
83 | | hdmapinvlem3.ij |
. . . . . 6
β’ (π β (πΌ Γ (πΊβπ½)) = ((πβπ·)βπΆ)) |
84 | 82, 83 | oveq12d 7376 |
. . . . 5
β’ (π β ( 0 (+gβπ
)(πΌ Γ (πΊβπ½))) = (((πβπ·)β(πΌ Β· πΈ))(+gβπ
)((πβπ·)βπΆ))) |
85 | 19, 43, 61 | grplid 18781 |
. . . . . 6
β’ ((π
β Grp β§ (πΌ Γ (πΊβπ½)) β π΅) β ( 0 (+gβπ
)(πΌ Γ (πΊβπ½))) = (πΌ Γ (πΊβπ½))) |
86 | 70, 72, 85 | syl2anc 585 |
. . . . 5
β’ (π β ( 0 (+gβπ
)(πΌ Γ (πΊβπ½))) = (πΌ Γ (πΊβπ½))) |
87 | 76, 84, 86 | 3eqtr2d 2783 |
. . . 4
β’ (π β ((πβπ·)β((πΌ Β· πΈ) + πΆ)) = (πΌ Γ (πΊβπ½))) |
88 | 75, 87 | oveq12d 7376 |
. . 3
β’ (π β (((πβ(π½ Β· πΈ))β((πΌ Β· πΈ) + πΆ))(-gβπ
)((πβπ·)β((πΌ Β· πΈ) + πΆ))) = ((πΌ Γ (πΊβπ½))(-gβπ
)(πΌ Γ (πΊβπ½)))) |
89 | 42, 88 | eqtrd 2777 |
. 2
β’ (π β (((πβ(π½ Β· πΈ))(-gβ((LCDualβπΎ)βπ))(πβπ·))β((πΌ Β· πΈ) + πΆ)) = ((πΌ Γ (πΊβπ½))(-gβπ
)(πΌ Γ (πΊβπ½)))) |
90 | 19, 61, 30 | grpsubid 18832 |
. . 3
β’ ((π
β Grp β§ (πΌ Γ (πΊβπ½)) β π΅) β ((πΌ Γ (πΊβπ½))(-gβπ
)(πΌ Γ (πΊβπ½))) = 0 ) |
91 | 70, 72, 90 | syl2anc 585 |
. 2
β’ (π β ((πΌ Γ (πΊβπ½))(-gβπ
)(πΌ Γ (πΊβπ½))) = 0 ) |
92 | 29, 89, 91 | 3eqtrd 2781 |
1
β’ (π β ((πβ((π½ Β· πΈ) β π·))β((πΌ Β· πΈ) + πΆ)) = 0 ) |