Proof of Theorem hdmapinvlem3
Step | Hyp | Ref
| Expression |
1 | | hdmapinvlem3.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmapinvlem3.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | hdmapinvlem3.v |
. . . 4
⊢ 𝑉 = (Base‘𝑈) |
4 | | hdmapinvlem3.m |
. . . 4
⊢ − =
(-g‘𝑈) |
5 | | eqid 2738 |
. . . 4
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) |
6 | | eqid 2738 |
. . . 4
⊢
(-g‘((LCDual‘𝐾)‘𝑊)) =
(-g‘((LCDual‘𝐾)‘𝑊)) |
7 | | hdmapinvlem3.s |
. . . 4
⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
8 | | hdmapinvlem3.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | 1, 2, 8 | dvhlmod 39051 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | | hdmapinvlem3.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ 𝐵) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
12 | | eqid 2738 |
. . . . . . 7
⊢
((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) |
13 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑈) = (0g‘𝑈) |
14 | | hdmapinvlem3.e |
. . . . . . 7
⊢ 𝐸 = 〈( I ↾
(Base‘𝐾)), ( I
↾ ((LTrn‘𝐾)‘𝑊))〉 |
15 | 1, 11, 12, 2, 3, 13, 14, 8 | dvheveccl 39053 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
16 | 15 | eldifad 3895 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
17 | | hdmapinvlem3.r |
. . . . . 6
⊢ 𝑅 = (Scalar‘𝑈) |
18 | | hdmapinvlem3.q |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑈) |
19 | | hdmapinvlem3.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
20 | 3, 17, 18, 19 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ 𝐽 ∈ 𝐵 ∧ 𝐸 ∈ 𝑉) → (𝐽 · 𝐸) ∈ 𝑉) |
21 | 9, 10, 16, 20 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → (𝐽 · 𝐸) ∈ 𝑉) |
22 | 16 | snssd 4739 |
. . . . . 6
⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
23 | | hdmapinvlem3.o |
. . . . . . 7
⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
24 | 1, 2, 3, 23 | dochssv 39296 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
25 | 8, 22, 24 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
26 | | hdmapinvlem3.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
27 | 25, 26 | sseldd 3918 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
28 | 1, 2, 3, 4, 5, 6, 7, 8, 21, 27 | hdmapsub 39788 |
. . 3
⊢ (𝜑 → (𝑆‘((𝐽 · 𝐸) − 𝐷)) = ((𝑆‘(𝐽 · 𝐸))(-g‘((LCDual‘𝐾)‘𝑊))(𝑆‘𝐷))) |
29 | 28 | fveq1d 6758 |
. 2
⊢ (𝜑 → ((𝑆‘((𝐽 · 𝐸) − 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = (((𝑆‘(𝐽 · 𝐸))(-g‘((LCDual‘𝐾)‘𝑊))(𝑆‘𝐷))‘((𝐼 · 𝐸) + 𝐶))) |
30 | | eqid 2738 |
. . . 4
⊢
(-g‘𝑅) = (-g‘𝑅) |
31 | | eqid 2738 |
. . . 4
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) |
32 | 1, 2, 3, 5, 31, 7,
8, 21 | hdmapcl 39771 |
. . . 4
⊢ (𝜑 → (𝑆‘(𝐽 · 𝐸)) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
33 | 1, 2, 3, 5, 31, 7,
8, 27 | hdmapcl 39771 |
. . . 4
⊢ (𝜑 → (𝑆‘𝐷) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
34 | | hdmapinvlem3.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝐵) |
35 | 3, 17, 18, 19 | lmodvscl 20055 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝐼 ∈ 𝐵 ∧ 𝐸 ∈ 𝑉) → (𝐼 · 𝐸) ∈ 𝑉) |
36 | 9, 34, 16, 35 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝐼 · 𝐸) ∈ 𝑉) |
37 | | hdmapinvlem3.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
38 | 25, 37 | sseldd 3918 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
39 | | hdmapinvlem3.p |
. . . . . 6
⊢ + =
(+g‘𝑈) |
40 | 3, 39 | lmodvacl 20052 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (𝐼 · 𝐸) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉) |
41 | 9, 36, 38, 40 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉) |
42 | 1, 2, 3, 17, 30, 5, 31, 6, 8,
32, 33, 41 | lcdvsubval 39559 |
. . 3
⊢ (𝜑 → (((𝑆‘(𝐽 · 𝐸))(-g‘((LCDual‘𝐾)‘𝑊))(𝑆‘𝐷))‘((𝐼 · 𝐸) + 𝐶)) = (((𝑆‘(𝐽 · 𝐸))‘((𝐼 · 𝐸) + 𝐶))(-g‘𝑅)((𝑆‘𝐷)‘((𝐼 · 𝐸) + 𝐶)))) |
43 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
44 | 1, 2, 3, 39, 17, 43, 7, 8, 36, 38, 21 | hdmaplna1 39848 |
. . . . 5
⊢ (𝜑 → ((𝑆‘(𝐽 · 𝐸))‘((𝐼 · 𝐸) + 𝐶)) = (((𝑆‘(𝐽 · 𝐸))‘(𝐼 · 𝐸))(+g‘𝑅)((𝑆‘(𝐽 · 𝐸))‘𝐶))) |
45 | | hdmapinvlem3.t |
. . . . . . . 8
⊢ × =
(.r‘𝑅) |
46 | | hdmapinvlem3.g |
. . . . . . . 8
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
47 | 1, 2, 3, 18, 17, 19, 45, 7, 46, 8, 36, 16, 10 | hdmapglnm2 39852 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 · 𝐸))‘(𝐼 · 𝐸)) = (((𝑆‘𝐸)‘(𝐼 · 𝐸)) × (𝐺‘𝐽))) |
48 | 1, 2, 3, 18, 17, 19, 45, 7, 8, 16, 16, 34 | hdmaplnm1 39850 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆‘𝐸)‘(𝐼 · 𝐸)) = (𝐼 × ((𝑆‘𝐸)‘𝐸))) |
49 | | eqid 2738 |
. . . . . . . . . . 11
⊢
((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) |
50 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
51 | 1, 14, 49, 7, 8, 2,
17, 50 | hdmapevec2 39777 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘𝐸)‘𝐸) = (1r‘𝑅)) |
52 | 51 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 × ((𝑆‘𝐸)‘𝐸)) = (𝐼 ×
(1r‘𝑅))) |
53 | 17 | lmodring 20046 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
54 | 9, 53 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
55 | 19, 45, 50 | ringridm 19726 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝐵) → (𝐼 ×
(1r‘𝑅)) =
𝐼) |
56 | 54, 34, 55 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 ×
(1r‘𝑅)) =
𝐼) |
57 | 48, 52, 56 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆‘𝐸)‘(𝐼 · 𝐸)) = 𝐼) |
58 | 57 | oveq1d 7270 |
. . . . . . 7
⊢ (𝜑 → (((𝑆‘𝐸)‘(𝐼 · 𝐸)) × (𝐺‘𝐽)) = (𝐼 × (𝐺‘𝐽))) |
59 | 47, 58 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘(𝐽 · 𝐸))‘(𝐼 · 𝐸)) = (𝐼 × (𝐺‘𝐽))) |
60 | 1, 2, 3, 18, 17, 19, 45, 7, 46, 8, 38, 16, 10 | hdmapglnm2 39852 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘(𝐽 · 𝐸))‘𝐶) = (((𝑆‘𝐸)‘𝐶) × (𝐺‘𝐽))) |
61 | | hdmapinvlem3.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
62 | 1, 14, 23, 2, 3, 17, 19, 45, 61, 7, 8, 37 | hdmapinvlem1 39859 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆‘𝐸)‘𝐶) = 0 ) |
63 | 62 | oveq1d 7270 |
. . . . . . 7
⊢ (𝜑 → (((𝑆‘𝐸)‘𝐶) × (𝐺‘𝐽)) = ( 0 × (𝐺‘𝐽))) |
64 | 1, 2, 17, 19, 46, 8, 10 | hgmapcl 39830 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝐽) ∈ 𝐵) |
65 | 19, 45, 61 | ringlz 19741 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝐺‘𝐽) ∈ 𝐵) → ( 0 × (𝐺‘𝐽)) = 0 ) |
66 | 54, 64, 65 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ( 0 × (𝐺‘𝐽)) = 0 ) |
67 | 60, 63, 66 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘(𝐽 · 𝐸))‘𝐶) = 0 ) |
68 | 59, 67 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → (((𝑆‘(𝐽 · 𝐸))‘(𝐼 · 𝐸))(+g‘𝑅)((𝑆‘(𝐽 · 𝐸))‘𝐶)) = ((𝐼 × (𝐺‘𝐽))(+g‘𝑅) 0 )) |
69 | | ringgrp 19703 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
70 | 54, 69 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
71 | 17, 19, 45 | lmodmcl 20050 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝐼 ∈ 𝐵 ∧ (𝐺‘𝐽) ∈ 𝐵) → (𝐼 × (𝐺‘𝐽)) ∈ 𝐵) |
72 | 9, 34, 64, 71 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) ∈ 𝐵) |
73 | 19, 43, 61 | grprid 18525 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ (𝐼 × (𝐺‘𝐽)) ∈ 𝐵) → ((𝐼 × (𝐺‘𝐽))(+g‘𝑅) 0 ) = (𝐼 × (𝐺‘𝐽))) |
74 | 70, 72, 73 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((𝐼 × (𝐺‘𝐽))(+g‘𝑅) 0 ) = (𝐼 × (𝐺‘𝐽))) |
75 | 44, 68, 74 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → ((𝑆‘(𝐽 · 𝐸))‘((𝐼 · 𝐸) + 𝐶)) = (𝐼 × (𝐺‘𝐽))) |
76 | 1, 2, 3, 39, 17, 43, 7, 8, 36, 38, 27 | hdmaplna1 39848 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝐷)‘((𝐼 · 𝐸) + 𝐶)) = (((𝑆‘𝐷)‘(𝐼 · 𝐸))(+g‘𝑅)((𝑆‘𝐷)‘𝐶))) |
77 | 1, 2, 3, 18, 17, 19, 45, 7, 8, 16, 27, 34 | hdmaplnm1 39850 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝐷)‘(𝐼 · 𝐸)) = (𝐼 × ((𝑆‘𝐷)‘𝐸))) |
78 | 1, 14, 23, 2, 3, 17, 19, 45, 61, 7, 8, 26 | hdmapinvlem2 39860 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆‘𝐷)‘𝐸) = 0 ) |
79 | 78 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (𝐼 × ((𝑆‘𝐷)‘𝐸)) = (𝐼 × 0 )) |
80 | 19, 45, 61 | ringrz 19742 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝐵) → (𝐼 × 0 ) = 0 ) |
81 | 54, 34, 80 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝐼 × 0 ) = 0 ) |
82 | 77, 79, 81 | 3eqtrrd 2783 |
. . . . . 6
⊢ (𝜑 → 0 = ((𝑆‘𝐷)‘(𝐼 · 𝐸))) |
83 | | hdmapinvlem3.ij |
. . . . . 6
⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) = ((𝑆‘𝐷)‘𝐶)) |
84 | 82, 83 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → ( 0 (+g‘𝑅)(𝐼 × (𝐺‘𝐽))) = (((𝑆‘𝐷)‘(𝐼 · 𝐸))(+g‘𝑅)((𝑆‘𝐷)‘𝐶))) |
85 | 19, 43, 61 | grplid 18524 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ (𝐼 × (𝐺‘𝐽)) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝐼 × (𝐺‘𝐽))) = (𝐼 × (𝐺‘𝐽))) |
86 | 70, 72, 85 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ( 0 (+g‘𝑅)(𝐼 × (𝐺‘𝐽))) = (𝐼 × (𝐺‘𝐽))) |
87 | 76, 84, 86 | 3eqtr2d 2784 |
. . . 4
⊢ (𝜑 → ((𝑆‘𝐷)‘((𝐼 · 𝐸) + 𝐶)) = (𝐼 × (𝐺‘𝐽))) |
88 | 75, 87 | oveq12d 7273 |
. . 3
⊢ (𝜑 → (((𝑆‘(𝐽 · 𝐸))‘((𝐼 · 𝐸) + 𝐶))(-g‘𝑅)((𝑆‘𝐷)‘((𝐼 · 𝐸) + 𝐶))) = ((𝐼 × (𝐺‘𝐽))(-g‘𝑅)(𝐼 × (𝐺‘𝐽)))) |
89 | 42, 88 | eqtrd 2778 |
. 2
⊢ (𝜑 → (((𝑆‘(𝐽 · 𝐸))(-g‘((LCDual‘𝐾)‘𝑊))(𝑆‘𝐷))‘((𝐼 · 𝐸) + 𝐶)) = ((𝐼 × (𝐺‘𝐽))(-g‘𝑅)(𝐼 × (𝐺‘𝐽)))) |
90 | 19, 61, 30 | grpsubid 18574 |
. . 3
⊢ ((𝑅 ∈ Grp ∧ (𝐼 × (𝐺‘𝐽)) ∈ 𝐵) → ((𝐼 × (𝐺‘𝐽))(-g‘𝑅)(𝐼 × (𝐺‘𝐽))) = 0 ) |
91 | 70, 72, 90 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝐼 × (𝐺‘𝐽))(-g‘𝑅)(𝐼 × (𝐺‘𝐽))) = 0 ) |
92 | 29, 89, 91 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝑆‘((𝐽 · 𝐸) − 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ) |