MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq0 Structured version   Visualization version   GIF version

Theorem lspsneq0 20380
Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsneq0.v 𝑉 = (Base‘𝑊)
lspsneq0.z 0 = (0g𝑊)
lspsneq0.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsneq0 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))

Proof of Theorem lspsneq0
StepHypRef Expression
1 lspsneq0.v . . . . 5 𝑉 = (Base‘𝑊)
2 lspsneq0.n . . . . 5 𝑁 = (LSpan‘𝑊)
31, 2lspsnid 20361 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
4 eleq2 2826 . . . 4 ((𝑁‘{𝑋}) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) ↔ 𝑋 ∈ { 0 }))
53, 4syl5ibcom 245 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 ∈ { 0 }))
6 elsni 4595 . . 3 (𝑋 ∈ { 0 } → 𝑋 = 0 )
75, 6syl6 35 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } → 𝑋 = 0 ))
8 lspsneq0.z . . . . 5 0 = (0g𝑊)
98, 2lspsn0 20376 . . . 4 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
109adantr 482 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{ 0 }) = { 0 })
11 sneq 4588 . . . 4 (𝑋 = 0 → {𝑋} = { 0 })
1211fveqeq2d 6838 . . 3 (𝑋 = 0 → ((𝑁‘{𝑋}) = { 0 } ↔ (𝑁‘{ 0 }) = { 0 }))
1310, 12syl5ibrcom 247 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 = 0 → (𝑁‘{𝑋}) = { 0 }))
147, 13impbid 211 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  {csn 4578  cfv 6484  Basecbs 17010  0gc0g 17248  LModclmod 20229  LSpanclspn 20339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-plusg 17073  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-mgp 19816  df-ring 19880  df-lmod 20231  df-lss 20300  df-lsp 20340
This theorem is referenced by:  lspsneq0b  20381  lsatn0  37315  lsator0sp  37317  lsat0cv  37349  dih0vbN  39599  dihlspsnat  39650  mapdn0  39986  mapdindp1  40037  hdmapeq0  40161
  Copyright terms: Public domain W3C validator