Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem8N Structured version   Visualization version   GIF version

Theorem hdmaprnlem8N 39052
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem8N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))

Proof of Theorem hdmaprnlem8N
StepHypRef Expression
1 hdmaprnlem1.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmaprnlem1.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38788 . 2 (𝜑𝐶 ∈ LMod)
5 hdmaprnlem1.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
6 hdmaprnlem1.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2824 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
8 eqid 2824 . . 3 (LSubSp‘𝐶) = (LSubSp‘𝐶)
91, 6, 3dvhlmod 38306 . . . 4 (𝜑𝑈 ∈ LMod)
10 hdmaprnlem1.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
12 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
13 hdmaprnlem1.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmaprnlem1.se . . . . 5 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
15 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
16 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
17 hdmaprnlem1.ue . . . . 5 (𝜑𝑢𝑉)
18 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
19 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
20 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
21 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
22 hdmaprnlem1.a . . . . 5 = (+g𝐶)
23 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
241, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4tN 39048 . . . 4 (𝜑𝑡𝑉)
2510, 7, 11lspsncl 19735 . . . 4 ((𝑈 ∈ LMod ∧ 𝑡𝑉) → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈))
269, 24, 25syl2anc 587 . . 3 (𝜑 → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈))
271, 5, 6, 7, 2, 8, 3, 26mapdcl2 38852 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑡})) ∈ (LSubSp‘𝐶))
2814eldifad 3930 . . . 4 (𝜑𝑠𝐷)
2919, 12lspsnid 19751 . . . 4 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
304, 28, 29syl2anc 587 . . 3 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
311, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4N 39049 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
3230, 31eleqtrrd 2919 . 2 (𝜑𝑠 ∈ (𝑀‘(𝑁‘{𝑡})))
331, 6, 10, 2, 19, 13, 3, 24hdmapcl 39026 . . . 4 (𝜑 → (𝑆𝑡) ∈ 𝐷)
3419, 12lspsnid 19751 . . . 4 ((𝐶 ∈ LMod ∧ (𝑆𝑡) ∈ 𝐷) → (𝑆𝑡) ∈ (𝐿‘{(𝑆𝑡)}))
354, 33, 34syl2anc 587 . . 3 (𝜑 → (𝑆𝑡) ∈ (𝐿‘{(𝑆𝑡)}))
361, 6, 10, 11, 2, 12, 5, 13, 3, 24hdmap10 39036 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{(𝑆𝑡)}))
3735, 36eleqtrrd 2919 . 2 (𝜑 → (𝑆𝑡) ∈ (𝑀‘(𝑁‘{𝑡})))
38 eqid 2824 . . 3 (-g𝐶) = (-g𝐶)
3938, 8lssvsubcl 19701 . 2 (((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑡})) ∈ (LSubSp‘𝐶)) ∧ (𝑠 ∈ (𝑀‘(𝑁‘{𝑡})) ∧ (𝑆𝑡) ∈ (𝑀‘(𝑁‘{𝑡})))) → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
404, 27, 32, 37, 39syl22anc 837 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  cdif 3915  {csn 4548  cfv 6336  (class class class)co 7138  Basecbs 16472  +gcplusg 16554  0gc0g 16702  -gcsg 18094  LModclmod 19620  LSubSpclss 19689  LSpanclspn 19729  HLchlt 36546  LHypclh 37180  DVecHcdvh 38274  LCDualclcd 38782  mapdcmpd 38820  HDMapchdma 38988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-riotaBAD 36149
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-ot 4557  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-sca 16570  df-vsca 16571  df-0g 16704  df-mre 16846  df-mrc 16847  df-acs 16849  df-proset 17527  df-poset 17545  df-plt 17557  df-lub 17573  df-glb 17574  df-join 17575  df-meet 17576  df-p0 17638  df-p1 17639  df-lat 17645  df-clat 17707  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-grp 18095  df-minusg 18096  df-sbg 18097  df-subg 18265  df-cntz 18436  df-oppg 18463  df-lsm 18750  df-cmn 18897  df-abl 18898  df-mgp 19229  df-ur 19241  df-ring 19288  df-oppr 19362  df-dvdsr 19380  df-unit 19381  df-invr 19411  df-dvr 19422  df-drng 19490  df-lmod 19622  df-lss 19690  df-lsp 19730  df-lvec 19861  df-lsatoms 36172  df-lshyp 36173  df-lcv 36215  df-lfl 36254  df-lkr 36282  df-ldual 36320  df-oposet 36372  df-ol 36374  df-oml 36375  df-covers 36462  df-ats 36463  df-atl 36494  df-cvlat 36518  df-hlat 36547  df-llines 36694  df-lplanes 36695  df-lvols 36696  df-lines 36697  df-psubsp 36699  df-pmap 36700  df-padd 36992  df-lhyp 37184  df-laut 37185  df-ldil 37300  df-ltrn 37301  df-trl 37355  df-tgrp 37939  df-tendo 37951  df-edring 37953  df-dveca 38199  df-disoa 38225  df-dvech 38275  df-dib 38335  df-dic 38369  df-dih 38425  df-doch 38544  df-djh 38591  df-lcdual 38783  df-mapd 38821  df-hvmap 38953  df-hdmap1 38989  df-hdmap 38990
This theorem is referenced by:  hdmaprnlem9N  39053
  Copyright terms: Public domain W3C validator