Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem8N Structured version   Visualization version   GIF version

Theorem hdmaprnlem8N 37930
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem8N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))

Proof of Theorem hdmaprnlem8N
StepHypRef Expression
1 hdmaprnlem1.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmaprnlem1.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 37666 . 2 (𝜑𝐶 ∈ LMod)
5 hdmaprnlem1.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
6 hdmaprnlem1.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2825 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
8 eqid 2825 . . 3 (LSubSp‘𝐶) = (LSubSp‘𝐶)
91, 6, 3dvhlmod 37184 . . . 4 (𝜑𝑈 ∈ LMod)
10 hdmaprnlem1.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
12 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
13 hdmaprnlem1.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmaprnlem1.se . . . . 5 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
15 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
16 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
17 hdmaprnlem1.ue . . . . 5 (𝜑𝑢𝑉)
18 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
19 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
20 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
21 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
22 hdmaprnlem1.a . . . . 5 = (+g𝐶)
23 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
241, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4tN 37926 . . . 4 (𝜑𝑡𝑉)
2510, 7, 11lspsncl 19343 . . . 4 ((𝑈 ∈ LMod ∧ 𝑡𝑉) → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈))
269, 24, 25syl2anc 579 . . 3 (𝜑 → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈))
271, 5, 6, 7, 2, 8, 3, 26mapdcl2 37730 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑡})) ∈ (LSubSp‘𝐶))
2814eldifad 3810 . . . 4 (𝜑𝑠𝐷)
2919, 12lspsnid 19359 . . . 4 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
304, 28, 29syl2anc 579 . . 3 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
311, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4N 37927 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
3230, 31eleqtrrd 2909 . 2 (𝜑𝑠 ∈ (𝑀‘(𝑁‘{𝑡})))
331, 6, 10, 2, 19, 13, 3, 24hdmapcl 37904 . . . 4 (𝜑 → (𝑆𝑡) ∈ 𝐷)
3419, 12lspsnid 19359 . . . 4 ((𝐶 ∈ LMod ∧ (𝑆𝑡) ∈ 𝐷) → (𝑆𝑡) ∈ (𝐿‘{(𝑆𝑡)}))
354, 33, 34syl2anc 579 . . 3 (𝜑 → (𝑆𝑡) ∈ (𝐿‘{(𝑆𝑡)}))
361, 6, 10, 11, 2, 12, 5, 13, 3, 24hdmap10 37914 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{(𝑆𝑡)}))
3735, 36eleqtrrd 2909 . 2 (𝜑 → (𝑆𝑡) ∈ (𝑀‘(𝑁‘{𝑡})))
38 eqid 2825 . . 3 (-g𝐶) = (-g𝐶)
3938, 8lssvsubcl 19307 . 2 (((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑡})) ∈ (LSubSp‘𝐶)) ∧ (𝑠 ∈ (𝑀‘(𝑁‘{𝑡})) ∧ (𝑆𝑡) ∈ (𝑀‘(𝑁‘{𝑡})))) → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
404, 27, 32, 37, 39syl22anc 872 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  cdif 3795  {csn 4399  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  0gc0g 16460  -gcsg 17785  LModclmod 19226  LSubSpclss 19295  LSpanclspn 19337  HLchlt 35424  LHypclh 36058  DVecHcdvh 37152  LCDualclcd 37660  mapdcmpd 37698  HDMapchdma 37866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-riotaBAD 35027
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-ot 4408  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-undef 7669  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-0g 16462  df-mre 16606  df-mrc 16607  df-acs 16609  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cntz 18107  df-oppg 18133  df-lsm 18409  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-drng 19112  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lvec 19469  df-lsatoms 35050  df-lshyp 35051  df-lcv 35093  df-lfl 35132  df-lkr 35160  df-ldual 35198  df-oposet 35250  df-ol 35252  df-oml 35253  df-covers 35340  df-ats 35341  df-atl 35372  df-cvlat 35396  df-hlat 35425  df-llines 35572  df-lplanes 35573  df-lvols 35574  df-lines 35575  df-psubsp 35577  df-pmap 35578  df-padd 35870  df-lhyp 36062  df-laut 36063  df-ldil 36178  df-ltrn 36179  df-trl 36233  df-tgrp 36817  df-tendo 36829  df-edring 36831  df-dveca 37077  df-disoa 37103  df-dvech 37153  df-dib 37213  df-dic 37247  df-dih 37303  df-doch 37422  df-djh 37469  df-lcdual 37661  df-mapd 37699  df-hvmap 37831  df-hdmap1 37867  df-hdmap 37868
This theorem is referenced by:  hdmaprnlem9N  37931
  Copyright terms: Public domain W3C validator