Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem8N Structured version   Visualization version   GIF version

Theorem hdmaprnlem8N 38986
Description: Part of proof of part 12 in [Baer] p. 49 line 19, s-St (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
hdmaprnlem1.p + = (+g𝑈)
hdmaprnlem1.pt (𝜑 → (𝐿‘{((𝑆𝑢) 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)})))
Assertion
Ref Expression
hdmaprnlem8N (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))

Proof of Theorem hdmaprnlem8N
StepHypRef Expression
1 hdmaprnlem1.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmaprnlem1.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmaprnlem1.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38722 . 2 (𝜑𝐶 ∈ LMod)
5 hdmaprnlem1.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
6 hdmaprnlem1.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 eqid 2821 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
8 eqid 2821 . . 3 (LSubSp‘𝐶) = (LSubSp‘𝐶)
91, 6, 3dvhlmod 38240 . . . 4 (𝜑𝑈 ∈ LMod)
10 hdmaprnlem1.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
12 hdmaprnlem1.l . . . . 5 𝐿 = (LSpan‘𝐶)
13 hdmaprnlem1.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
14 hdmaprnlem1.se . . . . 5 (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
15 hdmaprnlem1.ve . . . . 5 (𝜑𝑣𝑉)
16 hdmaprnlem1.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
17 hdmaprnlem1.ue . . . . 5 (𝜑𝑢𝑉)
18 hdmaprnlem1.un . . . . 5 (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
19 hdmaprnlem1.d . . . . 5 𝐷 = (Base‘𝐶)
20 hdmaprnlem1.q . . . . 5 𝑄 = (0g𝐶)
21 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
22 hdmaprnlem1.a . . . . 5 = (+g𝐶)
23 hdmaprnlem1.t2 . . . . 5 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
241, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4tN 38982 . . . 4 (𝜑𝑡𝑉)
2510, 7, 11lspsncl 19743 . . . 4 ((𝑈 ∈ LMod ∧ 𝑡𝑉) → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈))
269, 24, 25syl2anc 586 . . 3 (𝜑 → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈))
271, 5, 6, 7, 2, 8, 3, 26mapdcl2 38786 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑡})) ∈ (LSubSp‘𝐶))
2814eldifad 3947 . . . 4 (𝜑𝑠𝐷)
2919, 12lspsnid 19759 . . . 4 ((𝐶 ∈ LMod ∧ 𝑠𝐷) → 𝑠 ∈ (𝐿‘{𝑠}))
304, 28, 29syl2anc 586 . . 3 (𝜑𝑠 ∈ (𝐿‘{𝑠}))
311, 6, 10, 11, 2, 12, 5, 13, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23hdmaprnlem4N 38983 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
3230, 31eleqtrrd 2916 . 2 (𝜑𝑠 ∈ (𝑀‘(𝑁‘{𝑡})))
331, 6, 10, 2, 19, 13, 3, 24hdmapcl 38960 . . . 4 (𝜑 → (𝑆𝑡) ∈ 𝐷)
3419, 12lspsnid 19759 . . . 4 ((𝐶 ∈ LMod ∧ (𝑆𝑡) ∈ 𝐷) → (𝑆𝑡) ∈ (𝐿‘{(𝑆𝑡)}))
354, 33, 34syl2anc 586 . . 3 (𝜑 → (𝑆𝑡) ∈ (𝐿‘{(𝑆𝑡)}))
361, 6, 10, 11, 2, 12, 5, 13, 3, 24hdmap10 38970 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{(𝑆𝑡)}))
3735, 36eleqtrrd 2916 . 2 (𝜑 → (𝑆𝑡) ∈ (𝑀‘(𝑁‘{𝑡})))
38 eqid 2821 . . 3 (-g𝐶) = (-g𝐶)
3938, 8lssvsubcl 19709 . 2 (((𝐶 ∈ LMod ∧ (𝑀‘(𝑁‘{𝑡})) ∈ (LSubSp‘𝐶)) ∧ (𝑠 ∈ (𝑀‘(𝑁‘{𝑡})) ∧ (𝑆𝑡) ∈ (𝑀‘(𝑁‘{𝑡})))) → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
404, 27, 32, 37, 39syl22anc 836 1 (𝜑 → (𝑠(-g𝐶)(𝑆𝑡)) ∈ (𝑀‘(𝑁‘{𝑡})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  cdif 3932  {csn 4560  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  0gc0g 16707  -gcsg 18099  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  HLchlt 36480  LHypclh 37114  DVecHcdvh 38208  LCDualclcd 38716  mapdcmpd 38754  HDMapchdma 38922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-ot 4569  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-0g 16709  df-mre 16851  df-mrc 16852  df-acs 16854  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-oppg 18468  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-lsatoms 36106  df-lshyp 36107  df-lcv 36149  df-lfl 36188  df-lkr 36216  df-ldual 36254  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-tgrp 37873  df-tendo 37885  df-edring 37887  df-dveca 38133  df-disoa 38159  df-dvech 38209  df-dib 38269  df-dic 38303  df-dih 38359  df-doch 38478  df-djh 38525  df-lcdual 38717  df-mapd 38755  df-hvmap 38887  df-hdmap1 38923  df-hdmap 38924
This theorem is referenced by:  hdmaprnlem9N  38987
  Copyright terms: Public domain W3C validator