MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisjb Structured version   Visualization version   GIF version

Theorem lspdisjb 21065
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
lspdisjb.v 𝑉 = (Base‘𝑊)
lspdisjb.o 0 = (0g𝑊)
lspdisjb.n 𝑁 = (LSpan‘𝑊)
lspdisjb.s 𝑆 = (LSubSp‘𝑊)
lspdisjb.w (𝜑𝑊 ∈ LVec)
lspdisjb.u (𝜑𝑈𝑆)
lspdisjb.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lspdisjb (𝜑 → (¬ 𝑋𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }))

Proof of Theorem lspdisjb
StepHypRef Expression
1 lspdisjb.v . . 3 𝑉 = (Base‘𝑊)
2 lspdisjb.o . . 3 0 = (0g𝑊)
3 lspdisjb.n . . 3 𝑁 = (LSpan‘𝑊)
4 lspdisjb.s . . 3 𝑆 = (LSubSp‘𝑊)
5 lspdisjb.w . . . 4 (𝜑𝑊 ∈ LVec)
65adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑊 ∈ LVec)
7 lspdisjb.u . . . 4 (𝜑𝑈𝑆)
87adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈𝑆)
9 lspdisjb.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3910 . . . 4 (𝜑𝑋𝑉)
1110adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑋𝑉)
12 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ¬ 𝑋𝑈)
131, 2, 3, 4, 6, 8, 11, 12lspdisj 21064 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })
14 eldifsni 4741 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
159, 14syl 17 . . . 4 (𝜑𝑋0 )
1615adantr 480 . . 3 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → 𝑋0 )
17 lveclmod 21042 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
185, 17syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
191, 3lspsnid 20928 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2018, 10, 19syl2anc 584 . . . . 5 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
21 elin 3914 . . . . . . 7 (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋𝑈))
22 eleq2 2822 . . . . . . . 8 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ 𝑋 ∈ { 0 }))
23 elsni 4592 . . . . . . . 8 (𝑋 ∈ { 0 } → 𝑋 = 0 )
2422, 23biimtrdi 253 . . . . . . 7 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑋 = 0 ))
2521, 24biimtrrid 243 . . . . . 6 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → ((𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋𝑈) → 𝑋 = 0 ))
2625expd 415 . . . . 5 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) → (𝑋𝑈𝑋 = 0 )))
2720, 26mpan9 506 . . . 4 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋𝑈𝑋 = 0 ))
2827necon3ad 2942 . . 3 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋0 → ¬ 𝑋𝑈))
2916, 28mpd 15 . 2 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → ¬ 𝑋𝑈)
3013, 29impbida 800 1 (𝜑 → (¬ 𝑋𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  cin 3897  {csn 4575  cfv 6486  Basecbs 17122  0gc0g 17345  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LVecclvec 21038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039
This theorem is referenced by:  mapdh6b0N  41855  hdmap1l6b0N  41929
  Copyright terms: Public domain W3C validator