MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisjb Structured version   Visualization version   GIF version

Theorem lspdisjb 21087
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
lspdisjb.v 𝑉 = (Base‘𝑊)
lspdisjb.o 0 = (0g𝑊)
lspdisjb.n 𝑁 = (LSpan‘𝑊)
lspdisjb.s 𝑆 = (LSubSp‘𝑊)
lspdisjb.w (𝜑𝑊 ∈ LVec)
lspdisjb.u (𝜑𝑈𝑆)
lspdisjb.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lspdisjb (𝜑 → (¬ 𝑋𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }))

Proof of Theorem lspdisjb
StepHypRef Expression
1 lspdisjb.v . . 3 𝑉 = (Base‘𝑊)
2 lspdisjb.o . . 3 0 = (0g𝑊)
3 lspdisjb.n . . 3 𝑁 = (LSpan‘𝑊)
4 lspdisjb.s . . 3 𝑆 = (LSubSp‘𝑊)
5 lspdisjb.w . . . 4 (𝜑𝑊 ∈ LVec)
65adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑊 ∈ LVec)
7 lspdisjb.u . . . 4 (𝜑𝑈𝑆)
87adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈𝑆)
9 lspdisjb.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3938 . . . 4 (𝜑𝑋𝑉)
1110adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑋𝑉)
12 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ¬ 𝑋𝑈)
131, 2, 3, 4, 6, 8, 11, 12lspdisj 21086 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })
14 eldifsni 4766 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
159, 14syl 17 . . . 4 (𝜑𝑋0 )
1615adantr 480 . . 3 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → 𝑋0 )
17 lveclmod 21064 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
185, 17syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
191, 3lspsnid 20950 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2018, 10, 19syl2anc 584 . . . . 5 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
21 elin 3942 . . . . . . 7 (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋𝑈))
22 eleq2 2823 . . . . . . . 8 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ 𝑋 ∈ { 0 }))
23 elsni 4618 . . . . . . . 8 (𝑋 ∈ { 0 } → 𝑋 = 0 )
2422, 23biimtrdi 253 . . . . . . 7 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑋 = 0 ))
2521, 24biimtrrid 243 . . . . . 6 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → ((𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋𝑈) → 𝑋 = 0 ))
2625expd 415 . . . . 5 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) → (𝑋𝑈𝑋 = 0 )))
2720, 26mpan9 506 . . . 4 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋𝑈𝑋 = 0 ))
2827necon3ad 2945 . . 3 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋0 → ¬ 𝑋𝑈))
2916, 28mpd 15 . 2 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → ¬ 𝑋𝑈)
3013, 29impbida 800 1 (𝜑 → (¬ 𝑋𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cin 3925  {csn 4601  cfv 6531  Basecbs 17228  0gc0g 17453  LModclmod 20817  LSubSpclss 20888  LSpanclspn 20928  LVecclvec 21060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061
This theorem is referenced by:  mapdh6b0N  41755  hdmap1l6b0N  41829
  Copyright terms: Public domain W3C validator