| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspdisjb | Structured version Visualization version GIF version | ||
| Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| lspdisjb.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspdisjb.o | ⊢ 0 = (0g‘𝑊) |
| lspdisjb.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspdisjb.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspdisjb.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspdisjb.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspdisjb.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| lspdisjb | ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspdisjb.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lspdisjb.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 3 | lspdisjb.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lspdisjb.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | lspdisjb.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑊 ∈ LVec) |
| 7 | lspdisjb.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
| 9 | lspdisjb.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 10 | 9 | eldifad 3963 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ¬ 𝑋 ∈ 𝑈) | |
| 13 | 1, 2, 3, 4, 6, 8, 11, 12 | lspdisj 21127 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) |
| 14 | eldifsni 4790 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
| 15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → 𝑋 ≠ 0 ) |
| 17 | lveclmod 21105 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 19 | 1, 3 | lspsnid 20991 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 20 | 18, 10, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
| 21 | elin 3967 | . . . . . . 7 ⊢ (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈)) | |
| 22 | eleq2 2830 | . . . . . . . 8 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ 𝑋 ∈ { 0 })) | |
| 23 | elsni 4643 | . . . . . . . 8 ⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
| 24 | 22, 23 | biimtrdi 253 | . . . . . . 7 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑋 = 0 )) |
| 25 | 21, 24 | biimtrrid 243 | . . . . . 6 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → ((𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈) → 𝑋 = 0 )) |
| 26 | 25 | expd 415 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) → (𝑋 ∈ 𝑈 → 𝑋 = 0 ))) |
| 27 | 20, 26 | mpan9 506 | . . . 4 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ∈ 𝑈 → 𝑋 = 0 )) |
| 28 | 27 | necon3ad 2953 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ≠ 0 → ¬ 𝑋 ∈ 𝑈)) |
| 29 | 16, 28 | mpd 15 | . 2 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → ¬ 𝑋 ∈ 𝑈) |
| 30 | 13, 29 | impbida 801 | 1 ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 ∩ cin 3950 {csn 4626 ‘cfv 6561 Basecbs 17247 0gc0g 17484 LModclmod 20858 LSubSpclss 20929 LSpanclspn 20969 LVecclvec 21101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lvec 21102 |
| This theorem is referenced by: mapdh6b0N 41738 hdmap1l6b0N 41812 |
| Copyright terms: Public domain | W3C validator |