![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspdisjb | Structured version Visualization version GIF version |
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
lspdisjb.v | ⊢ 𝑉 = (Base‘𝑊) |
lspdisjb.o | ⊢ 0 = (0g‘𝑊) |
lspdisjb.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspdisjb.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspdisjb.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspdisjb.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspdisjb.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
lspdisjb | ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspdisjb.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspdisjb.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | lspdisjb.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lspdisjb.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspdisjb.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑊 ∈ LVec) |
7 | lspdisjb.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
9 | lspdisjb.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
10 | 9 | eldifad 3975 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ¬ 𝑋 ∈ 𝑈) | |
13 | 1, 2, 3, 4, 6, 8, 11, 12 | lspdisj 21145 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) |
14 | eldifsni 4795 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → 𝑋 ≠ 0 ) |
17 | lveclmod 21123 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
19 | 1, 3 | lspsnid 21009 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
20 | 18, 10, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
21 | elin 3979 | . . . . . . 7 ⊢ (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈)) | |
22 | eleq2 2828 | . . . . . . . 8 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ 𝑋 ∈ { 0 })) | |
23 | elsni 4648 | . . . . . . . 8 ⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
24 | 22, 23 | biimtrdi 253 | . . . . . . 7 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑋 = 0 )) |
25 | 21, 24 | biimtrrid 243 | . . . . . 6 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → ((𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈) → 𝑋 = 0 )) |
26 | 25 | expd 415 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) → (𝑋 ∈ 𝑈 → 𝑋 = 0 ))) |
27 | 20, 26 | mpan9 506 | . . . 4 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ∈ 𝑈 → 𝑋 = 0 )) |
28 | 27 | necon3ad 2951 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ≠ 0 → ¬ 𝑋 ∈ 𝑈)) |
29 | 16, 28 | mpd 15 | . 2 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → ¬ 𝑋 ∈ 𝑈) |
30 | 13, 29 | impbida 801 | 1 ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 ∩ cin 3962 {csn 4631 ‘cfv 6563 Basecbs 17245 0gc0g 17486 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 LVecclvec 21119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 |
This theorem is referenced by: mapdh6b0N 41719 hdmap1l6b0N 41793 |
Copyright terms: Public domain | W3C validator |