![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspdisjb | Structured version Visualization version GIF version |
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
lspdisjb.v | β’ π = (Baseβπ) |
lspdisjb.o | β’ 0 = (0gβπ) |
lspdisjb.n | β’ π = (LSpanβπ) |
lspdisjb.s | β’ π = (LSubSpβπ) |
lspdisjb.w | β’ (π β π β LVec) |
lspdisjb.u | β’ (π β π β π) |
lspdisjb.x | β’ (π β π β (π β { 0 })) |
Ref | Expression |
---|---|
lspdisjb | β’ (π β (Β¬ π β π β ((πβ{π}) β© π) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspdisjb.v | . . 3 β’ π = (Baseβπ) | |
2 | lspdisjb.o | . . 3 β’ 0 = (0gβπ) | |
3 | lspdisjb.n | . . 3 β’ π = (LSpanβπ) | |
4 | lspdisjb.s | . . 3 β’ π = (LSubSpβπ) | |
5 | lspdisjb.w | . . . 4 β’ (π β π β LVec) | |
6 | 5 | adantr 480 | . . 3 β’ ((π β§ Β¬ π β π) β π β LVec) |
7 | lspdisjb.u | . . . 4 β’ (π β π β π) | |
8 | 7 | adantr 480 | . . 3 β’ ((π β§ Β¬ π β π) β π β π) |
9 | lspdisjb.x | . . . . 5 β’ (π β π β (π β { 0 })) | |
10 | 9 | eldifad 3955 | . . . 4 β’ (π β π β π) |
11 | 10 | adantr 480 | . . 3 β’ ((π β§ Β¬ π β π) β π β π) |
12 | simpr 484 | . . 3 β’ ((π β§ Β¬ π β π) β Β¬ π β π) | |
13 | 1, 2, 3, 4, 6, 8, 11, 12 | lspdisj 20973 | . 2 β’ ((π β§ Β¬ π β π) β ((πβ{π}) β© π) = { 0 }) |
14 | eldifsni 4788 | . . . . 5 β’ (π β (π β { 0 }) β π β 0 ) | |
15 | 9, 14 | syl 17 | . . . 4 β’ (π β π β 0 ) |
16 | 15 | adantr 480 | . . 3 β’ ((π β§ ((πβ{π}) β© π) = { 0 }) β π β 0 ) |
17 | lveclmod 20951 | . . . . . . 7 β’ (π β LVec β π β LMod) | |
18 | 5, 17 | syl 17 | . . . . . 6 β’ (π β π β LMod) |
19 | 1, 3 | lspsnid 20837 | . . . . . 6 β’ ((π β LMod β§ π β π) β π β (πβ{π})) |
20 | 18, 10, 19 | syl2anc 583 | . . . . 5 β’ (π β π β (πβ{π})) |
21 | elin 3959 | . . . . . . 7 β’ (π β ((πβ{π}) β© π) β (π β (πβ{π}) β§ π β π)) | |
22 | eleq2 2816 | . . . . . . . 8 β’ (((πβ{π}) β© π) = { 0 } β (π β ((πβ{π}) β© π) β π β { 0 })) | |
23 | elsni 4640 | . . . . . . . 8 β’ (π β { 0 } β π = 0 ) | |
24 | 22, 23 | biimtrdi 252 | . . . . . . 7 β’ (((πβ{π}) β© π) = { 0 } β (π β ((πβ{π}) β© π) β π = 0 )) |
25 | 21, 24 | biimtrrid 242 | . . . . . 6 β’ (((πβ{π}) β© π) = { 0 } β ((π β (πβ{π}) β§ π β π) β π = 0 )) |
26 | 25 | expd 415 | . . . . 5 β’ (((πβ{π}) β© π) = { 0 } β (π β (πβ{π}) β (π β π β π = 0 ))) |
27 | 20, 26 | mpan9 506 | . . . 4 β’ ((π β§ ((πβ{π}) β© π) = { 0 }) β (π β π β π = 0 )) |
28 | 27 | necon3ad 2947 | . . 3 β’ ((π β§ ((πβ{π}) β© π) = { 0 }) β (π β 0 β Β¬ π β π)) |
29 | 16, 28 | mpd 15 | . 2 β’ ((π β§ ((πβ{π}) β© π) = { 0 }) β Β¬ π β π) |
30 | 13, 29 | impbida 798 | 1 β’ (π β (Β¬ π β π β ((πβ{π}) β© π) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β cdif 3940 β© cin 3942 {csn 4623 βcfv 6536 Basecbs 17150 0gc0g 17391 LModclmod 20703 LSubSpclss 20775 LSpanclspn 20815 LVecclvec 20947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-sbg 18865 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-drng 20586 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lvec 20948 |
This theorem is referenced by: mapdh6b0N 41119 hdmap1l6b0N 41193 |
Copyright terms: Public domain | W3C validator |