MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisjb Structured version   Visualization version   GIF version

Theorem lspdisjb 21107
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
lspdisjb.v 𝑉 = (Base‘𝑊)
lspdisjb.o 0 = (0g𝑊)
lspdisjb.n 𝑁 = (LSpan‘𝑊)
lspdisjb.s 𝑆 = (LSubSp‘𝑊)
lspdisjb.w (𝜑𝑊 ∈ LVec)
lspdisjb.u (𝜑𝑈𝑆)
lspdisjb.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lspdisjb (𝜑 → (¬ 𝑋𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }))

Proof of Theorem lspdisjb
StepHypRef Expression
1 lspdisjb.v . . 3 𝑉 = (Base‘𝑊)
2 lspdisjb.o . . 3 0 = (0g𝑊)
3 lspdisjb.n . . 3 𝑁 = (LSpan‘𝑊)
4 lspdisjb.s . . 3 𝑆 = (LSubSp‘𝑊)
5 lspdisjb.w . . . 4 (𝜑𝑊 ∈ LVec)
65adantr 479 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑊 ∈ LVec)
7 lspdisjb.u . . . 4 (𝜑𝑈𝑆)
87adantr 479 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑈𝑆)
9 lspdisjb.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3959 . . . 4 (𝜑𝑋𝑉)
1110adantr 479 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → 𝑋𝑉)
12 simpr 483 . . 3 ((𝜑 ∧ ¬ 𝑋𝑈) → ¬ 𝑋𝑈)
131, 2, 3, 4, 6, 8, 11, 12lspdisj 21106 . 2 ((𝜑 ∧ ¬ 𝑋𝑈) → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })
14 eldifsni 4799 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
159, 14syl 17 . . . 4 (𝜑𝑋0 )
1615adantr 479 . . 3 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → 𝑋0 )
17 lveclmod 21084 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
185, 17syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
191, 3lspsnid 20970 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2018, 10, 19syl2anc 582 . . . . 5 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
21 elin 3963 . . . . . . 7 (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋𝑈))
22 eleq2 2815 . . . . . . . 8 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ 𝑋 ∈ { 0 }))
23 elsni 4650 . . . . . . . 8 (𝑋 ∈ { 0 } → 𝑋 = 0 )
2422, 23biimtrdi 252 . . . . . . 7 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑋 = 0 ))
2521, 24biimtrrid 242 . . . . . 6 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → ((𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋𝑈) → 𝑋 = 0 ))
2625expd 414 . . . . 5 (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) → (𝑋𝑈𝑋 = 0 )))
2720, 26mpan9 505 . . . 4 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋𝑈𝑋 = 0 ))
2827necon3ad 2943 . . 3 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋0 → ¬ 𝑋𝑈))
2916, 28mpd 15 . 2 ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → ¬ 𝑋𝑈)
3013, 29impbida 799 1 (𝜑 → (¬ 𝑋𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  cdif 3944  cin 3946  {csn 4633  cfv 6554  Basecbs 17213  0gc0g 17454  LModclmod 20836  LSubSpclss 20908  LSpanclspn 20948  LVecclvec 21080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-sbg 18933  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-drng 20709  df-lmod 20838  df-lss 20909  df-lsp 20949  df-lvec 21081
This theorem is referenced by:  mapdh6b0N  41435  hdmap1l6b0N  41509
  Copyright terms: Public domain W3C validator