Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspdisjb | Structured version Visualization version GIF version |
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
lspdisjb.v | ⊢ 𝑉 = (Base‘𝑊) |
lspdisjb.o | ⊢ 0 = (0g‘𝑊) |
lspdisjb.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspdisjb.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspdisjb.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspdisjb.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspdisjb.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
lspdisjb | ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspdisjb.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspdisjb.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | lspdisjb.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lspdisjb.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspdisjb.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑊 ∈ LVec) |
7 | lspdisjb.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
9 | lspdisjb.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
10 | 9 | eldifad 3909 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
12 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ¬ 𝑋 ∈ 𝑈) | |
13 | 1, 2, 3, 4, 6, 8, 11, 12 | lspdisj 20470 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ 𝑈) → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) |
14 | eldifsni 4735 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
16 | 15 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → 𝑋 ≠ 0 ) |
17 | lveclmod 20451 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
19 | 1, 3 | lspsnid 20338 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
20 | 18, 10, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
21 | elin 3913 | . . . . . . 7 ⊢ (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈)) | |
22 | eleq2 2826 | . . . . . . . 8 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) ↔ 𝑋 ∈ { 0 })) | |
23 | elsni 4588 | . . . . . . . 8 ⊢ (𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
24 | 22, 23 | syl6bi 252 | . . . . . . 7 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ ((𝑁‘{𝑋}) ∩ 𝑈) → 𝑋 = 0 )) |
25 | 21, 24 | syl5bir 242 | . . . . . 6 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → ((𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ 𝑈) → 𝑋 = 0 )) |
26 | 25 | expd 416 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∩ 𝑈) = { 0 } → (𝑋 ∈ (𝑁‘{𝑋}) → (𝑋 ∈ 𝑈 → 𝑋 = 0 ))) |
27 | 20, 26 | mpan9 507 | . . . 4 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ∈ 𝑈 → 𝑋 = 0 )) |
28 | 27 | necon3ad 2954 | . . 3 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → (𝑋 ≠ 0 → ¬ 𝑋 ∈ 𝑈)) |
29 | 16, 28 | mpd 15 | . 2 ⊢ ((𝜑 ∧ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) → ¬ 𝑋 ∈ 𝑈) |
30 | 13, 29 | impbida 798 | 1 ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∖ cdif 3894 ∩ cin 3896 {csn 4571 ‘cfv 6466 Basecbs 16989 0gc0g 17227 LModclmod 20206 LSubSpclss 20276 LSpanclspn 20316 LVecclvec 20447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-tpos 8091 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-0g 17229 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-grp 18656 df-minusg 18657 df-sbg 18658 df-mgp 19796 df-ur 19813 df-ring 19860 df-oppr 19937 df-dvdsr 19958 df-unit 19959 df-invr 19989 df-drng 20072 df-lmod 20208 df-lss 20277 df-lsp 20317 df-lvec 20448 |
This theorem is referenced by: mapdh6b0N 39971 hdmap1l6b0N 40045 |
Copyright terms: Public domain | W3C validator |