Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem15 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39372. (Contributed by NM, 9-Mar-2015.) |
Ref | Expression |
---|---|
lcf1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcf1o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcf1o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcf1o.v | ⊢ 𝑉 = (Base‘𝑈) |
lcf1o.a | ⊢ + = (+g‘𝑈) |
lcf1o.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcf1o.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcf1o.r | ⊢ 𝑅 = (Base‘𝑆) |
lcf1o.z | ⊢ 0 = (0g‘𝑈) |
lcf1o.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcf1o.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcf1o.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcf1o.q | ⊢ 𝑄 = (0g‘𝐷) |
lcf1o.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcf1o.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcflo.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem10.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
lcfrlem15 | ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcf1o.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcf1o.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcflo.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 38897 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | lcfrlem10.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
6 | 5 | eldifad 3895 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
7 | lcf1o.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
8 | eqid 2739 | . . . 4 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
9 | 7, 8 | lspsnid 20062 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ ((LSpan‘𝑈)‘{𝑋})) |
10 | 4, 6, 9 | syl2anc 587 | . 2 ⊢ (𝜑 → 𝑋 ∈ ((LSpan‘𝑈)‘{𝑋})) |
11 | lcf1o.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
12 | lcf1o.a | . . 3 ⊢ + = (+g‘𝑈) | |
13 | lcf1o.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
14 | lcf1o.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
15 | lcf1o.r | . . 3 ⊢ 𝑅 = (Base‘𝑆) | |
16 | lcf1o.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
17 | lcf1o.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
18 | lcf1o.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
19 | lcf1o.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
20 | lcf1o.q | . . 3 ⊢ 𝑄 = (0g‘𝐷) | |
21 | lcf1o.c | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
22 | lcf1o.j | . . 3 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
23 | 1, 11, 2, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 3, 5, 8 | lcfrlem14 39343 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘(𝐽‘𝑋))) = ((LSpan‘𝑈)‘{𝑋})) |
24 | 10, 23 | eleqtrrd 2843 | 1 ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 {crab 3068 ∖ cdif 3880 {csn 4557 ↦ cmpt 5151 ‘cfv 6400 ℩crio 7190 (class class class)co 7234 Basecbs 16792 +gcplusg 16834 Scalarcsca 16837 ·𝑠 cvsca 16838 0gc0g 16976 LModclmod 19931 LSpanclspn 20040 LFnlclfn 36844 LKerclk 36872 LDualcld 36910 HLchlt 37137 LHypclh 37771 DVecHcdvh 38865 ocHcoch 39134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-riotaBAD 36740 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-tpos 7991 df-undef 8038 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-n0 12120 df-z 12206 df-uz 12468 df-fz 13125 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-sca 16850 df-vsca 16851 df-0g 16978 df-proset 17834 df-poset 17852 df-plt 17868 df-lub 17884 df-glb 17885 df-join 17886 df-meet 17887 df-p0 17963 df-p1 17964 df-lat 17970 df-clat 18037 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-submnd 18251 df-grp 18400 df-minusg 18401 df-sbg 18402 df-subg 18572 df-cntz 18743 df-lsm 19057 df-cmn 19204 df-abl 19205 df-mgp 19537 df-ur 19549 df-ring 19596 df-oppr 19673 df-dvdsr 19691 df-unit 19692 df-invr 19722 df-dvr 19733 df-drng 19801 df-lmod 19933 df-lss 20001 df-lsp 20041 df-lvec 20172 df-lsatoms 36763 df-lshyp 36764 df-lfl 36845 df-lkr 36873 df-oposet 36963 df-ol 36965 df-oml 36966 df-covers 37053 df-ats 37054 df-atl 37085 df-cvlat 37109 df-hlat 37138 df-llines 37285 df-lplanes 37286 df-lvols 37287 df-lines 37288 df-psubsp 37290 df-pmap 37291 df-padd 37583 df-lhyp 37775 df-laut 37776 df-ldil 37891 df-ltrn 37892 df-trl 37946 df-tgrp 38530 df-tendo 38542 df-edring 38544 df-dveca 38790 df-disoa 38816 df-dvech 38866 df-dib 38926 df-dic 38960 df-dih 39016 df-doch 39135 df-djh 39182 |
This theorem is referenced by: lcfrlem16 39345 |
Copyright terms: Public domain | W3C validator |