Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1dimid Structured version   Visualization version   GIF version

Theorem dia1dimid 39872
Description: A vector (translation) belongs to the 1-dim subspace it generates. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia1dimid.h 𝐻 = (LHyp‘𝐾)
dia1dimid.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia1dimid.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia1dimid.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1dimid (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (𝐼‘(𝑅𝐹)))

Proof of Theorem dia1dimid
StepHypRef Expression
1 dia1dimid.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 eqid 2733 . . . . . 6 ((DVecA‘𝐾)‘𝑊) = ((DVecA‘𝐾)‘𝑊)
31, 2dvalvec 39835 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DVecA‘𝐾)‘𝑊) ∈ LVec)
4 lveclmod 20705 . . . . 5 (((DVecA‘𝐾)‘𝑊) ∈ LVec → ((DVecA‘𝐾)‘𝑊) ∈ LMod)
53, 4syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((DVecA‘𝐾)‘𝑊) ∈ LMod)
65adantr 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((DVecA‘𝐾)‘𝑊) ∈ LMod)
7 dia1dimid.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 eqid 2733 . . . . . 6 (Base‘((DVecA‘𝐾)‘𝑊)) = (Base‘((DVecA‘𝐾)‘𝑊))
91, 7, 2, 8dvavbase 39822 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘((DVecA‘𝐾)‘𝑊)) = 𝑇)
109eleq2d 2820 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹 ∈ (Base‘((DVecA‘𝐾)‘𝑊)) ↔ 𝐹𝑇))
1110biimpar 479 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (Base‘((DVecA‘𝐾)‘𝑊)))
12 eqid 2733 . . . 4 (LSpan‘((DVecA‘𝐾)‘𝑊)) = (LSpan‘((DVecA‘𝐾)‘𝑊))
138, 12lspsnid 20592 . . 3 ((((DVecA‘𝐾)‘𝑊) ∈ LMod ∧ 𝐹 ∈ (Base‘((DVecA‘𝐾)‘𝑊))) → 𝐹 ∈ ((LSpan‘((DVecA‘𝐾)‘𝑊))‘{𝐹}))
146, 11, 13syl2anc 585 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LSpan‘((DVecA‘𝐾)‘𝑊))‘{𝐹}))
15 dia1dimid.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
16 dia1dimid.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
171, 7, 15, 2, 16, 12dia1dim2 39871 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = ((LSpan‘((DVecA‘𝐾)‘𝑊))‘{𝐹}))
1814, 17eleqtrrd 2837 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (𝐼‘(𝑅𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {csn 4627  cfv 6540  Basecbs 17140  LModclmod 20459  LSpanclspn 20570  LVecclvec 20701  HLchlt 38158  LHypclh 38793  LTrncltrn 38910  trLctrl 38967  DVecAcdveca 39811  DIsoAcdia 39837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-riotaBAD 37761
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-undef 8253  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-0g 17383  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-dvr 20204  df-drng 20306  df-lmod 20461  df-lss 20531  df-lsp 20571  df-lvec 20702  df-oposet 37984  df-ol 37986  df-oml 37987  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159  df-llines 38307  df-lplanes 38308  df-lvols 38309  df-lines 38310  df-psubsp 38312  df-pmap 38313  df-padd 38605  df-lhyp 38797  df-laut 38798  df-ldil 38913  df-ltrn 38914  df-trl 38968  df-tgrp 39552  df-tendo 39564  df-edring 39566  df-dveca 39812  df-disoa 39838
This theorem is referenced by:  dia2dimlem9  39881
  Copyright terms: Public domain W3C validator