![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maduf | Structured version Visualization version GIF version |
Description: Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
Ref | Expression |
---|---|
maduf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
maduf.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
maduf.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
maduf | ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maduf.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2725 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | maduf.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 3 | matrcl 22356 | . . . . 5 ⊢ (𝑚 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | 4 | adantl 480 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
6 | 5 | simpld 493 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑁 ∈ Fin) |
7 | simpl 481 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ CRing) | |
8 | eqid 2725 | . . . . . . 7 ⊢ (𝑁 maDet 𝑅) = (𝑁 maDet 𝑅) | |
9 | 8, 1, 3, 2 | mdetf 22541 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
10 | 9 | adantr 479 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
11 | 10 | 3ad2ant1 1130 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
12 | 6 | 3ad2ant1 1130 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ Fin) |
13 | simp1l 1194 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ CRing) | |
14 | simp11l 1281 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ CRing) | |
15 | crngring 20197 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
16 | eqid 2725 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
17 | 2, 16 | ringidcl 20214 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
18 | eqid 2725 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
19 | 2, 18 | ring0cl 20215 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
20 | 17, 19 | ifcld 4576 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
21 | 14, 15, 20 | 3syl 18 | . . . . . 6 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
22 | simp2 1134 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑁) | |
23 | simp3 1135 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) | |
24 | simp11r 1282 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑚 ∈ 𝐵) | |
25 | 1, 2, 3, 22, 23, 24 | matecld 22372 | . . . . . 6 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘𝑚𝑙) ∈ (Base‘𝑅)) |
26 | 21, 25 | ifcld 4576 | . . . . 5 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)) ∈ (Base‘𝑅)) |
27 | 1, 2, 3, 12, 13, 26 | matbas2d 22369 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))) ∈ 𝐵) |
28 | 11, 27 | ffvelcdmd 7094 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))) ∈ (Base‘𝑅)) |
29 | 1, 2, 3, 6, 7, 28 | matbas2d 22369 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))) ∈ 𝐵) |
30 | maduf.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
31 | 1, 8, 30, 3, 16, 18 | madufval 22583 | . 2 ⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))))) |
32 | 29, 31 | fmptd 7123 | 1 ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ifcif 4530 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 Fincfn 8964 Basecbs 17183 0gc0g 17424 1rcur 20133 Ringcrg 20185 CRingccrg 20186 Mat cmat 22351 maDet cmdat 22530 maAdju cmadu 22578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-xnn0 12578 df-z 12592 df-dec 12711 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-word 14501 df-lsw 14549 df-concat 14557 df-s1 14582 df-substr 14627 df-pfx 14657 df-splice 14736 df-reverse 14745 df-s2 14835 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-efmnd 18829 df-grp 18901 df-minusg 18902 df-mulg 19032 df-subg 19086 df-ghm 19176 df-gim 19222 df-cntz 19280 df-oppg 19309 df-symg 19334 df-pmtr 19409 df-psgn 19458 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-cring 20188 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-dvr 20352 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-drng 20638 df-sra 21070 df-rgmod 21071 df-cnfld 21297 df-zring 21390 df-zrh 21446 df-dsmm 21683 df-frlm 21698 df-mat 22352 df-mdet 22531 df-madu 22580 |
This theorem is referenced by: madutpos 22588 madugsum 22589 madurid 22590 madulid 22591 matinv 22623 cpmadugsumfi 22823 |
Copyright terms: Public domain | W3C validator |