| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > maduf | Structured version Visualization version GIF version | ||
| Description: Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
| Ref | Expression |
|---|---|
| maduf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| maduf.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
| maduf.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| maduf | ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | maduf.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | maduf.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | 1, 3 | matrcl 22350 | . . . . 5 ⊢ (𝑚 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 6 | 5 | simpld 494 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 7 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ CRing) | |
| 8 | eqid 2735 | . . . . . . 7 ⊢ (𝑁 maDet 𝑅) = (𝑁 maDet 𝑅) | |
| 9 | 8, 1, 3, 2 | mdetf 22533 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
| 11 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
| 12 | 6 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 13 | simp1l 1198 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ CRing) | |
| 14 | simp11l 1285 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ CRing) | |
| 15 | crngring 20205 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 16 | eqid 2735 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 17 | 2, 16 | ringidcl 20225 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 18 | eqid 2735 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 19 | 2, 18 | ring0cl 20227 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 20 | 17, 19 | ifcld 4547 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 21 | 14, 15, 20 | 3syl 18 | . . . . . 6 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 22 | simp2 1137 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑁) | |
| 23 | simp3 1138 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) | |
| 24 | simp11r 1286 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑚 ∈ 𝐵) | |
| 25 | 1, 2, 3, 22, 23, 24 | matecld 22364 | . . . . . 6 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘𝑚𝑙) ∈ (Base‘𝑅)) |
| 26 | 21, 25 | ifcld 4547 | . . . . 5 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)) ∈ (Base‘𝑅)) |
| 27 | 1, 2, 3, 12, 13, 26 | matbas2d 22361 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))) ∈ 𝐵) |
| 28 | 11, 27 | ffvelcdmd 7075 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))) ∈ (Base‘𝑅)) |
| 29 | 1, 2, 3, 6, 7, 28 | matbas2d 22361 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))) ∈ 𝐵) |
| 30 | maduf.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
| 31 | 1, 8, 30, 3, 16, 18 | madufval 22575 | . 2 ⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))))) |
| 32 | 29, 31 | fmptd 7104 | 1 ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ifcif 4500 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Fincfn 8959 Basecbs 17228 0gc0g 17453 1rcur 20141 Ringcrg 20193 CRingccrg 20194 Mat cmat 22345 maDet cmdat 22522 maAdju cmadu 22570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 df-splice 14768 df-reverse 14777 df-s2 14867 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-efmnd 18847 df-grp 18919 df-minusg 18920 df-mulg 19051 df-subg 19106 df-ghm 19196 df-gim 19242 df-cntz 19300 df-oppg 19329 df-symg 19351 df-pmtr 19423 df-psgn 19472 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-drng 20691 df-sra 21131 df-rgmod 21132 df-cnfld 21316 df-zring 21408 df-zrh 21464 df-dsmm 21692 df-frlm 21707 df-mat 22346 df-mdet 22523 df-madu 22572 |
| This theorem is referenced by: madutpos 22580 madugsum 22581 madurid 22582 madulid 22583 matinv 22615 cpmadugsumfi 22815 |
| Copyright terms: Public domain | W3C validator |