![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maduf | Structured version Visualization version GIF version |
Description: Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018.) |
Ref | Expression |
---|---|
maduf.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
maduf.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
maduf.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
maduf | ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maduf.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2824 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | maduf.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | 1, 3 | matrcl 20584 | . . . . 5 ⊢ (𝑚 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | 4 | adantl 475 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
6 | 5 | simpld 490 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑁 ∈ Fin) |
7 | simpl 476 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ CRing) | |
8 | eqid 2824 | . . . . . . 7 ⊢ (𝑁 maDet 𝑅) = (𝑁 maDet 𝑅) | |
9 | 8, 1, 3, 2 | mdetf 20768 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
10 | 9 | adantr 474 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
11 | 10 | 3ad2ant1 1169 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑁 maDet 𝑅):𝐵⟶(Base‘𝑅)) |
12 | 6 | 3ad2ant1 1169 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ Fin) |
13 | simp1l 1260 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ CRing) | |
14 | simp11l 1389 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ CRing) | |
15 | crngring 18911 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
16 | eqid 2824 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
17 | 2, 16 | ringidcl 18921 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
18 | eqid 2824 | . . . . . . . . 9 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
19 | 2, 18 | ring0cl 18922 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
20 | 17, 19 | ifcld 4350 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
21 | 14, 15, 20 | 3syl 18 | . . . . . 6 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
22 | simp2 1173 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑁) | |
23 | simp3 1174 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) | |
24 | simp11r 1390 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑚 ∈ 𝐵) | |
25 | 1, 2, 3, 22, 23, 24 | matecld 20598 | . . . . . 6 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘𝑚𝑙) ∈ (Base‘𝑅)) |
26 | 21, 25 | ifcld 4350 | . . . . 5 ⊢ ((((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)) ∈ (Base‘𝑅)) |
27 | 1, 2, 3, 12, 13, 26 | matbas2d 20595 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))) ∈ 𝐵) |
28 | 11, 27 | ffvelrnd 6608 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))) ∈ (Base‘𝑅)) |
29 | 1, 2, 3, 6, 7, 28 | matbas2d 20595 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑚 ∈ 𝐵) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙))))) ∈ 𝐵) |
30 | maduf.j | . . 3 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
31 | 1, 8, 30, 3, 16, 18 | madufval 20810 | . 2 ⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑅), (0g‘𝑅)), (𝑘𝑚𝑙)))))) |
32 | 29, 31 | fmptd 6632 | 1 ⊢ (𝑅 ∈ CRing → 𝐽:𝐵⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ifcif 4305 ⟶wf 6118 ‘cfv 6122 (class class class)co 6904 ↦ cmpt2 6906 Fincfn 8221 Basecbs 16221 0gc0g 16452 1rcur 18854 Ringcrg 18900 CRingccrg 18901 Mat cmat 20579 maDet cmdat 20757 maAdju cmadu 20805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-inf2 8814 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 ax-addf 10330 ax-mulf 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-xor 1640 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-ot 4405 df-uni 4658 df-int 4697 df-iun 4741 df-iin 4742 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-se 5301 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-isom 6131 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-supp 7559 df-tpos 7616 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-2o 7826 df-oadd 7829 df-er 8008 df-map 8123 df-pm 8124 df-ixp 8175 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-fsupp 8544 df-sup 8616 df-oi 8683 df-card 9077 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-9 11420 df-n0 11618 df-xnn0 11690 df-z 11704 df-dec 11821 df-uz 11968 df-rp 12112 df-fz 12619 df-fzo 12760 df-seq 13095 df-exp 13154 df-hash 13410 df-word 13574 df-lsw 13622 df-concat 13630 df-s1 13655 df-substr 13700 df-pfx 13749 df-splice 13856 df-reverse 13874 df-s2 13968 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-ress 16229 df-plusg 16317 df-mulr 16318 df-starv 16319 df-sca 16320 df-vsca 16321 df-ip 16322 df-tset 16323 df-ple 16324 df-ds 16326 df-unif 16327 df-hom 16328 df-cco 16329 df-0g 16454 df-gsum 16455 df-prds 16460 df-pws 16462 df-mre 16598 df-mrc 16599 df-acs 16601 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-mhm 17687 df-submnd 17688 df-grp 17778 df-minusg 17779 df-mulg 17894 df-subg 17941 df-ghm 18008 df-gim 18051 df-cntz 18099 df-oppg 18125 df-symg 18147 df-pmtr 18211 df-psgn 18260 df-cmn 18547 df-abl 18548 df-mgp 18843 df-ur 18855 df-ring 18902 df-cring 18903 df-oppr 18976 df-dvdsr 18994 df-unit 18995 df-invr 19025 df-dvr 19036 df-rnghom 19070 df-drng 19104 df-subrg 19133 df-sra 19532 df-rgmod 19533 df-cnfld 20106 df-zring 20178 df-zrh 20211 df-dsmm 20438 df-frlm 20453 df-mat 20580 df-mdet 20758 df-madu 20807 |
This theorem is referenced by: madutpos 20815 madugsum 20816 madurid 20817 madulid 20818 matinv 20851 cpmadugsumfi 21051 |
Copyright terms: Public domain | W3C validator |