MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem6 Structured version   Visualization version   GIF version

Theorem axsegconlem6 28147
Description: Lemma for axsegcon 28152. Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013.)
Hypothesis
Ref Expression
axsegconlem2.1 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
Assertion
Ref Expression
axsegconlem6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 < (√‘𝑆))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝑁,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem axsegconlem6
StepHypRef Expression
1 axsegconlem2.1 . . . 4 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
21axsegconlem4 28145 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ)
323adant3 1133 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ∈ ℝ)
41axsegconlem5 28146 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ (√‘𝑆))
543adant3 1133 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 ≤ (√‘𝑆))
6 eqeelen 28129 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2) = 0))
71eqeq1i 2738 . . . . . 6 (𝑆 = 0 ↔ Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2) = 0)
86, 7bitr4di 289 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵𝑆 = 0))
91axsegconlem2 28143 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ)
101axsegconlem3 28144 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆)
11 sqrt00 15197 . . . . . 6 ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆) = 0 ↔ 𝑆 = 0))
129, 10, 11syl2anc 585 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((√‘𝑆) = 0 ↔ 𝑆 = 0))
138, 12bitr4d 282 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ (√‘𝑆) = 0))
1413necon3bid 2986 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴𝐵 ↔ (√‘𝑆) ≠ 0))
1514biimp3a 1470 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → (√‘𝑆) ≠ 0)
163, 5, 15ne0gt0d 11338 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) → 0 < (√‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5144  cfv 6535  (class class class)co 7396  cr 11096  0cc0 11097  1c1 11098   < clt 11235  cle 11236  cmin 11431  2c2 12254  ...cfz 13471  cexp 14014  csqrt 15167  Σcsu 15619  𝔼cee 28113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-sup 9424  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-n0 12460  df-z 12546  df-uz 12810  df-rp 12962  df-ico 13317  df-fz 13472  df-fzo 13615  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-clim 15419  df-sum 15620  df-ee 28116
This theorem is referenced by:  axsegconlem7  28148  axsegconlem8  28149  axsegconlem9  28150  axsegconlem10  28151
  Copyright terms: Public domain W3C validator