| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axsegconlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for axsegcon 28859. Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| axsegconlem2.1 | ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) |
| Ref | Expression |
|---|---|
| axsegconlem6 | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axsegconlem2.1 | . . . 4 ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) | |
| 2 | 1 | axsegconlem4 28852 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ∈ ℝ) |
| 4 | 1 | axsegconlem5 28853 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ (√‘𝑆)) |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 ≤ (√‘𝑆)) |
| 6 | eqeelen 28836 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) = 0)) | |
| 7 | 1 | eqeq1i 2734 | . . . . . 6 ⊢ (𝑆 = 0 ↔ Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) = 0) |
| 8 | 6, 7 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ 𝑆 = 0)) |
| 9 | 1 | axsegconlem2 28850 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ) |
| 10 | 1 | axsegconlem3 28851 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆) |
| 11 | sqrt00 15157 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆) = 0 ↔ 𝑆 = 0)) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((√‘𝑆) = 0 ↔ 𝑆 = 0)) |
| 13 | 8, 12 | bitr4d 282 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ (√‘𝑆) = 0)) |
| 14 | 13 | necon3bid 2969 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 ≠ 𝐵 ↔ (√‘𝑆) ≠ 0)) |
| 15 | 14 | biimp3a 1471 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ≠ 0) |
| 16 | 3, 5, 15 | ne0gt0d 11241 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5088 ‘cfv 6476 (class class class)co 7340 ℝcr 10996 0cc0 10997 1c1 10998 < clt 11137 ≤ cle 11138 − cmin 11335 2c2 12171 ...cfz 13398 ↑cexp 13956 √csqrt 15127 Σcsu 15580 𝔼cee 28820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-inf2 9525 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 ax-pre-sup 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-1st 7915 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-er 8616 df-map 8746 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-sup 9320 df-oi 9390 df-card 9823 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-div 11766 df-nn 12117 df-2 12179 df-3 12180 df-n0 12373 df-z 12460 df-uz 12724 df-rp 12882 df-ico 13242 df-fz 13399 df-fzo 13546 df-seq 13897 df-exp 13957 df-hash 14226 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 df-clim 15382 df-sum 15581 df-ee 28823 |
| This theorem is referenced by: axsegconlem7 28855 axsegconlem8 28856 axsegconlem9 28857 axsegconlem10 28858 |
| Copyright terms: Public domain | W3C validator |