![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axsegconlem6 | Structured version Visualization version GIF version |
Description: Lemma for axsegcon 27973. Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013.) |
Ref | Expression |
---|---|
axsegconlem2.1 | ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) |
Ref | Expression |
---|---|
axsegconlem6 | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axsegconlem2.1 | . . . 4 ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) | |
2 | 1 | axsegconlem4 27966 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ) |
3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ∈ ℝ) |
4 | 1 | axsegconlem5 27967 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ (√‘𝑆)) |
5 | 4 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 ≤ (√‘𝑆)) |
6 | eqeelen 27950 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) = 0)) | |
7 | 1 | eqeq1i 2736 | . . . . . 6 ⊢ (𝑆 = 0 ↔ Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) = 0) |
8 | 6, 7 | bitr4di 288 | . . . . 5 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ 𝑆 = 0)) |
9 | 1 | axsegconlem2 27964 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ) |
10 | 1 | axsegconlem3 27965 | . . . . . 6 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆) |
11 | sqrt00 15175 | . . . . . 6 ⊢ ((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) → ((√‘𝑆) = 0 ↔ 𝑆 = 0)) | |
12 | 9, 10, 11 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((√‘𝑆) = 0 ↔ 𝑆 = 0)) |
13 | 8, 12 | bitr4d 281 | . . . 4 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ (√‘𝑆) = 0)) |
14 | 13 | necon3bid 2984 | . . 3 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 ≠ 𝐵 ↔ (√‘𝑆) ≠ 0)) |
15 | 14 | biimp3a 1469 | . 2 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → (√‘𝑆) ≠ 0) |
16 | 3, 5, 15 | ne0gt0d 11316 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 class class class wbr 5125 ‘cfv 6516 (class class class)co 7377 ℝcr 11074 0cc0 11075 1c1 11076 < clt 11213 ≤ cle 11214 − cmin 11409 2c2 12232 ...cfz 13449 ↑cexp 13992 √csqrt 15145 Σcsu 15597 𝔼cee 27934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5262 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3364 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-pss 3947 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-int 4928 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-tr 5243 df-id 5551 df-eprel 5557 df-po 5565 df-so 5566 df-fr 5608 df-se 5609 df-we 5610 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-pred 6273 df-ord 6340 df-on 6341 df-lim 6342 df-suc 6343 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-isom 6525 df-riota 7333 df-ov 7380 df-oprab 7381 df-mpo 7382 df-om 7823 df-1st 7941 df-2nd 7942 df-frecs 8232 df-wrecs 8263 df-recs 8337 df-rdg 8376 df-1o 8432 df-er 8670 df-map 8789 df-en 8906 df-dom 8907 df-sdom 8908 df-fin 8909 df-sup 9402 df-oi 9470 df-card 9899 df-pnf 11215 df-mnf 11216 df-xr 11217 df-ltxr 11218 df-le 11219 df-sub 11411 df-neg 11412 df-div 11837 df-nn 12178 df-2 12240 df-3 12241 df-n0 12438 df-z 12524 df-uz 12788 df-rp 12940 df-ico 13295 df-fz 13450 df-fzo 13593 df-seq 13932 df-exp 13993 df-hash 14256 df-cj 15011 df-re 15012 df-im 15013 df-sqrt 15147 df-abs 15148 df-clim 15397 df-sum 15598 df-ee 27937 |
This theorem is referenced by: axsegconlem7 27969 axsegconlem8 27970 axsegconlem9 27971 axsegconlem10 27972 |
Copyright terms: Public domain | W3C validator |