Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altgsumbc Structured version   Visualization version   GIF version

Theorem altgsumbc 44407
Description: The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 44406) instead of the binomial theorem (binom 15188) , see altgsumbcALT 44408. (Contributed by AV, 13-Sep-2019.)
Assertion
Ref Expression
altgsumbc (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Distinct variable group:   𝑘,𝑁

Proof of Theorem altgsumbc
StepHypRef Expression
1 1cnd 10639 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2 negid 10936 . . . . 5 (1 ∈ ℂ → (1 + -1) = 0)
32eqcomd 2830 . . . 4 (1 ∈ ℂ → 0 = (1 + -1))
41, 3syl 17 . . 3 (𝑁 ∈ ℕ → 0 = (1 + -1))
54oveq1d 7174 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = ((1 + -1)↑𝑁))
6 0exp 13467 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
71negcld 10987 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
8 nnnn0 11907 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9 binom 15188 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
101, 7, 8, 9syl3anc 1367 . . 3 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
11 nnz 12007 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12 elfzelz 12911 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
13 zsubcl 12027 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
1411, 12, 13syl2an 597 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
15 1exp 13461 . . . . . . . . 9 ((𝑁𝑘) ∈ ℤ → (1↑(𝑁𝑘)) = 1)
1614, 15syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁𝑘)) = 1)
1716oveq1d 7174 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (1 · (-1↑𝑘)))
18 neg1cn 11754 . . . . . . . . . 10 -1 ∈ ℂ
1918a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → -1 ∈ ℂ)
20 elfznn0 13003 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 expcl 13450 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
2219, 20, 21syl2an 597 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
2322mulid2d 10662 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1 · (-1↑𝑘)) = (-1↑𝑘))
2417, 23eqtrd 2859 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (-1↑𝑘))
2524oveq2d 7175 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((𝑁C𝑘) · (-1↑𝑘)))
26 bccl 13685 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
278, 12, 26syl2an 597 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
2827nn0cnd 11960 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
2928, 22mulcomd 10665 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · (𝑁C𝑘)))
3025, 29eqtrd 2859 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((-1↑𝑘) · (𝑁C𝑘)))
3130sumeq2dv 15063 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
3210, 31eqtrd 2859 . 2 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
335, 6, 323eqtr3rd 2868 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874  cn 11641  0cn0 11900  cz 11984  ...cfz 12895  cexp 13432  Ccbc 13665  Σcsu 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator