Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altgsumbc Structured version   Visualization version   GIF version

Theorem altgsumbc 45576
Description: The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 45575) instead of the binomial theorem (binom 15470) , see altgsumbcALT 45577. (Contributed by AV, 13-Sep-2019.)
Assertion
Ref Expression
altgsumbc (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Distinct variable group:   𝑘,𝑁

Proof of Theorem altgsumbc
StepHypRef Expression
1 1cnd 10901 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2 negid 11198 . . . . 5 (1 ∈ ℂ → (1 + -1) = 0)
32eqcomd 2744 . . . 4 (1 ∈ ℂ → 0 = (1 + -1))
41, 3syl 17 . . 3 (𝑁 ∈ ℕ → 0 = (1 + -1))
54oveq1d 7270 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = ((1 + -1)↑𝑁))
6 0exp 13746 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
71negcld 11249 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
8 nnnn0 12170 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9 binom 15470 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
101, 7, 8, 9syl3anc 1369 . . 3 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
11 nnz 12272 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12 elfzelz 13185 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
13 zsubcl 12292 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
1411, 12, 13syl2an 595 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
15 1exp 13740 . . . . . . . . 9 ((𝑁𝑘) ∈ ℤ → (1↑(𝑁𝑘)) = 1)
1614, 15syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁𝑘)) = 1)
1716oveq1d 7270 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (1 · (-1↑𝑘)))
18 neg1cn 12017 . . . . . . . . . 10 -1 ∈ ℂ
1918a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → -1 ∈ ℂ)
20 elfznn0 13278 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 expcl 13728 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
2219, 20, 21syl2an 595 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
2322mulid2d 10924 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1 · (-1↑𝑘)) = (-1↑𝑘))
2417, 23eqtrd 2778 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (-1↑𝑘))
2524oveq2d 7271 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((𝑁C𝑘) · (-1↑𝑘)))
26 bccl 13964 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
278, 12, 26syl2an 595 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
2827nn0cnd 12225 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
2928, 22mulcomd 10927 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · (𝑁C𝑘)))
3025, 29eqtrd 2778 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((-1↑𝑘) · (𝑁C𝑘)))
3130sumeq2dv 15343 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
3210, 31eqtrd 2778 . 2 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
335, 6, 323eqtr3rd 2787 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  cexp 13710  Ccbc 13944  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator