Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altgsumbc | Structured version Visualization version GIF version |
Description: The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 45687) instead of the binomial theorem (binom 15542) , see altgsumbcALT 45689. (Contributed by AV, 13-Sep-2019.) |
Ref | Expression |
---|---|
altgsumbc | ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10970 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
2 | negid 11268 | . . . . 5 ⊢ (1 ∈ ℂ → (1 + -1) = 0) | |
3 | 2 | eqcomd 2744 | . . . 4 ⊢ (1 ∈ ℂ → 0 = (1 + -1)) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 = (1 + -1)) |
5 | 4 | oveq1d 7290 | . 2 ⊢ (𝑁 ∈ ℕ → (0↑𝑁) = ((1 + -1)↑𝑁)) |
6 | 0exp 13818 | . 2 ⊢ (𝑁 ∈ ℕ → (0↑𝑁) = 0) | |
7 | 1 | negcld 11319 | . . . 4 ⊢ (𝑁 ∈ ℕ → -1 ∈ ℂ) |
8 | nnnn0 12240 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
9 | binom 15542 | . . . 4 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)))) | |
10 | 1, 7, 8, 9 | syl3anc 1370 | . . 3 ⊢ (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)))) |
11 | nnz 12342 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
12 | elfzelz 13256 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | |
13 | zsubcl 12362 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 − 𝑘) ∈ ℤ) | |
14 | 11, 12, 13 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
15 | 1exp 13812 | . . . . . . . . 9 ⊢ ((𝑁 − 𝑘) ∈ ℤ → (1↑(𝑁 − 𝑘)) = 1) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁 − 𝑘)) = 1) |
17 | 16 | oveq1d 7290 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (1 · (-1↑𝑘))) |
18 | neg1cn 12087 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → -1 ∈ ℂ) |
20 | elfznn0 13349 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
21 | expcl 13800 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
22 | 19, 20, 21 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ) |
23 | 22 | mulid2d 10993 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1 · (-1↑𝑘)) = (-1↑𝑘)) |
24 | 17, 23 | eqtrd 2778 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (-1↑𝑘)) |
25 | 24 | oveq2d 7291 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = ((𝑁C𝑘) · (-1↑𝑘))) |
26 | bccl 14036 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0) | |
27 | 8, 12, 26 | syl2an 596 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0) |
28 | 27 | nn0cnd 12295 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ) |
29 | 28, 22 | mulcomd 10996 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · (𝑁C𝑘))) |
30 | 25, 29 | eqtrd 2778 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = ((-1↑𝑘) · (𝑁C𝑘))) |
31 | 30 | sumeq2dv 15415 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘))) |
32 | 10, 31 | eqtrd 2778 | . 2 ⊢ (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘))) |
33 | 5, 6, 32 | 3eqtr3rd 2787 | 1 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 − cmin 11205 -cneg 11206 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ...cfz 13239 ↑cexp 13782 Ccbc 14016 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |