Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altgsumbc Structured version   Visualization version   GIF version

Theorem altgsumbc 48462
Description: The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 48461) instead of the binomial theorem (binom 15737), see altgsumbcALT 48463. (Contributed by AV, 13-Sep-2019.)
Assertion
Ref Expression
altgsumbc (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Distinct variable group:   𝑘,𝑁

Proof of Theorem altgsumbc
StepHypRef Expression
1 1cnd 11107 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2 negid 11408 . . . . 5 (1 ∈ ℂ → (1 + -1) = 0)
32eqcomd 2737 . . . 4 (1 ∈ ℂ → 0 = (1 + -1))
41, 3syl 17 . . 3 (𝑁 ∈ ℕ → 0 = (1 + -1))
54oveq1d 7361 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = ((1 + -1)↑𝑁))
6 0exp 14004 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
71negcld 11459 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
8 nnnn0 12388 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9 binom 15737 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
101, 7, 8, 9syl3anc 1373 . . 3 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
11 nnz 12489 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12 elfzelz 13424 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
13 zsubcl 12514 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
1411, 12, 13syl2an 596 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
15 1exp 13998 . . . . . . . . 9 ((𝑁𝑘) ∈ ℤ → (1↑(𝑁𝑘)) = 1)
1614, 15syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁𝑘)) = 1)
1716oveq1d 7361 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (1 · (-1↑𝑘)))
18 neg1cn 12110 . . . . . . . . . 10 -1 ∈ ℂ
1918a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → -1 ∈ ℂ)
20 elfznn0 13520 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 expcl 13986 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
2219, 20, 21syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
2322mullidd 11130 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1 · (-1↑𝑘)) = (-1↑𝑘))
2417, 23eqtrd 2766 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (-1↑𝑘))
2524oveq2d 7362 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((𝑁C𝑘) · (-1↑𝑘)))
26 bccl 14229 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
278, 12, 26syl2an 596 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
2827nn0cnd 12444 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
2928, 22mulcomd 11133 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · (𝑁C𝑘)))
3025, 29eqtrd 2766 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((-1↑𝑘) · (𝑁C𝑘)))
3130sumeq2dv 15609 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
3210, 31eqtrd 2766 . 2 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
335, 6, 323eqtr3rd 2775 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cexp 13968  Ccbc 14209  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator