![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altgsumbc | Structured version Visualization version GIF version |
Description: The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 46417) instead of the binomial theorem (binom 15715), see altgsumbcALT 46419. (Contributed by AV, 13-Sep-2019.) |
Ref | Expression |
---|---|
altgsumbc | ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 11150 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
2 | negid 11448 | . . . . 5 ⊢ (1 ∈ ℂ → (1 + -1) = 0) | |
3 | 2 | eqcomd 2742 | . . . 4 ⊢ (1 ∈ ℂ → 0 = (1 + -1)) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 = (1 + -1)) |
5 | 4 | oveq1d 7372 | . 2 ⊢ (𝑁 ∈ ℕ → (0↑𝑁) = ((1 + -1)↑𝑁)) |
6 | 0exp 14003 | . 2 ⊢ (𝑁 ∈ ℕ → (0↑𝑁) = 0) | |
7 | 1 | negcld 11499 | . . . 4 ⊢ (𝑁 ∈ ℕ → -1 ∈ ℂ) |
8 | nnnn0 12420 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
9 | binom 15715 | . . . 4 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)))) | |
10 | 1, 7, 8, 9 | syl3anc 1371 | . . 3 ⊢ (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)))) |
11 | nnz 12520 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
12 | elfzelz 13441 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | |
13 | zsubcl 12545 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 − 𝑘) ∈ ℤ) | |
14 | 11, 12, 13 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
15 | 1exp 13997 | . . . . . . . . 9 ⊢ ((𝑁 − 𝑘) ∈ ℤ → (1↑(𝑁 − 𝑘)) = 1) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁 − 𝑘)) = 1) |
17 | 16 | oveq1d 7372 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (1 · (-1↑𝑘))) |
18 | neg1cn 12267 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → -1 ∈ ℂ) |
20 | elfznn0 13534 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
21 | expcl 13985 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
22 | 19, 20, 21 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ) |
23 | 22 | mulid2d 11173 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1 · (-1↑𝑘)) = (-1↑𝑘)) |
24 | 17, 23 | eqtrd 2776 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (-1↑𝑘)) |
25 | 24 | oveq2d 7373 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = ((𝑁C𝑘) · (-1↑𝑘))) |
26 | bccl 14222 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0) | |
27 | 8, 12, 26 | syl2an 596 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0) |
28 | 27 | nn0cnd 12475 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ) |
29 | 28, 22 | mulcomd 11176 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · (𝑁C𝑘))) |
30 | 25, 29 | eqtrd 2776 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = ((-1↑𝑘) · (𝑁C𝑘))) |
31 | 30 | sumeq2dv 15588 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘))) |
32 | 10, 31 | eqtrd 2776 | . 2 ⊢ (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘))) |
33 | 5, 6, 32 | 3eqtr3rd 2785 | 1 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7357 ℂcc 11049 0cc0 11051 1c1 11052 + caddc 11054 · cmul 11056 − cmin 11385 -cneg 11386 ℕcn 12153 ℕ0cn0 12413 ℤcz 12499 ...cfz 13424 ↑cexp 13967 Ccbc 14202 Σcsu 15570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |