Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altgsumbc Structured version   Visualization version   GIF version

Theorem altgsumbc 45688
Description: The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 45687) instead of the binomial theorem (binom 15542) , see altgsumbcALT 45689. (Contributed by AV, 13-Sep-2019.)
Assertion
Ref Expression
altgsumbc (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Distinct variable group:   𝑘,𝑁

Proof of Theorem altgsumbc
StepHypRef Expression
1 1cnd 10970 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2 negid 11268 . . . . 5 (1 ∈ ℂ → (1 + -1) = 0)
32eqcomd 2744 . . . 4 (1 ∈ ℂ → 0 = (1 + -1))
41, 3syl 17 . . 3 (𝑁 ∈ ℕ → 0 = (1 + -1))
54oveq1d 7290 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = ((1 + -1)↑𝑁))
6 0exp 13818 . 2 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
71negcld 11319 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
8 nnnn0 12240 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9 binom 15542 . . . 4 ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
101, 7, 8, 9syl3anc 1370 . . 3 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))))
11 nnz 12342 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12 elfzelz 13256 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
13 zsubcl 12362 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
1411, 12, 13syl2an 596 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℤ)
15 1exp 13812 . . . . . . . . 9 ((𝑁𝑘) ∈ ℤ → (1↑(𝑁𝑘)) = 1)
1614, 15syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁𝑘)) = 1)
1716oveq1d 7290 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (1 · (-1↑𝑘)))
18 neg1cn 12087 . . . . . . . . . 10 -1 ∈ ℂ
1918a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → -1 ∈ ℂ)
20 elfznn0 13349 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
21 expcl 13800 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
2219, 20, 21syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
2322mulid2d 10993 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1 · (-1↑𝑘)) = (-1↑𝑘))
2417, 23eqtrd 2778 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁𝑘)) · (-1↑𝑘)) = (-1↑𝑘))
2524oveq2d 7291 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((𝑁C𝑘) · (-1↑𝑘)))
26 bccl 14036 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
278, 12, 26syl2an 596 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
2827nn0cnd 12295 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
2928, 22mulcomd 10996 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · (𝑁C𝑘)))
3025, 29eqtrd 2778 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = ((-1↑𝑘) · (𝑁C𝑘)))
3130sumeq2dv 15415 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁𝑘)) · (-1↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
3210, 31eqtrd 2778 . 2 (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)))
335, 6, 323eqtr3rd 2787 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  Ccbc 14016  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator