Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altgsumbc | Structured version Visualization version GIF version |
Description: The sum of binomial coefficients for a fixed positive 𝑁 with alternating signs is zero. Notice that this is not valid for 𝑁 = 0 (since ((-1↑0) · (0C0)) = (1 · 1) = 1). For a proof using Pascal's rule (bcpascm1 45575) instead of the binomial theorem (binom 15470) , see altgsumbcALT 45577. (Contributed by AV, 13-Sep-2019.) |
Ref | Expression |
---|---|
altgsumbc | ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cnd 10901 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
2 | negid 11198 | . . . . 5 ⊢ (1 ∈ ℂ → (1 + -1) = 0) | |
3 | 2 | eqcomd 2744 | . . . 4 ⊢ (1 ∈ ℂ → 0 = (1 + -1)) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 = (1 + -1)) |
5 | 4 | oveq1d 7270 | . 2 ⊢ (𝑁 ∈ ℕ → (0↑𝑁) = ((1 + -1)↑𝑁)) |
6 | 0exp 13746 | . 2 ⊢ (𝑁 ∈ ℕ → (0↑𝑁) = 0) | |
7 | 1 | negcld 11249 | . . . 4 ⊢ (𝑁 ∈ ℕ → -1 ∈ ℂ) |
8 | nnnn0 12170 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
9 | binom 15470 | . . . 4 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)))) | |
10 | 1, 7, 8, 9 | syl3anc 1369 | . . 3 ⊢ (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)))) |
11 | nnz 12272 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
12 | elfzelz 13185 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | |
13 | zsubcl 12292 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 − 𝑘) ∈ ℤ) | |
14 | 11, 12, 13 | syl2an 595 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
15 | 1exp 13740 | . . . . . . . . 9 ⊢ ((𝑁 − 𝑘) ∈ ℤ → (1↑(𝑁 − 𝑘)) = 1) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁 − 𝑘)) = 1) |
17 | 16 | oveq1d 7270 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (1 · (-1↑𝑘))) |
18 | neg1cn 12017 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → -1 ∈ ℂ) |
20 | elfznn0 13278 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
21 | expcl 13728 | . . . . . . . . 9 ⊢ ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ) | |
22 | 19, 20, 21 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ) |
23 | 22 | mulid2d 10924 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (1 · (-1↑𝑘)) = (-1↑𝑘)) |
24 | 17, 23 | eqtrd 2778 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (-1↑𝑘)) = (-1↑𝑘)) |
25 | 24 | oveq2d 7271 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = ((𝑁C𝑘) · (-1↑𝑘))) |
26 | bccl 13964 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0) | |
27 | 8, 12, 26 | syl2an 595 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0) |
28 | 27 | nn0cnd 12225 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ) |
29 | 28, 22 | mulcomd 10927 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (-1↑𝑘)) = ((-1↑𝑘) · (𝑁C𝑘))) |
30 | 25, 29 | eqtrd 2778 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = ((-1↑𝑘) · (𝑁C𝑘))) |
31 | 30 | sumeq2dv 15343 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (-1↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘))) |
32 | 10, 31 | eqtrd 2778 | . 2 ⊢ (𝑁 ∈ ℕ → ((1 + -1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘))) |
33 | 5, 6, 32 | 3eqtr3rd 2787 | 1 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 -cneg 11136 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ↑cexp 13710 Ccbc 13944 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |