MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negidd Structured version   Visualization version   GIF version

Theorem negidd 11322
Description: Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
negidd (𝜑 → (𝐴 + -𝐴) = 0)

Proof of Theorem negidd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 negid 11268 . 2 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
31, 2syl 17 1 (𝜑 → (𝐴 + -𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208
This theorem is referenced by:  xnegid  12972  xpncan  12985  moddvds  15974  pwp1fsum  16100  bitsres  16180  pcadd2  16591  zaddablx  19473  zringinvg  20687  ditgsplit  25025  dvferm2lem  25150  vieta1  25472  geolim3  25499  ulmshft  25549  cxpneg  25836  dcubic1lem  25993  lgamgulmlem1  26178  archiabllem2c  31449  signsply0  32530  knoppndvlem14  34705  poimir  35810  itgaddnclem2  35836  dffltz  40471  negexpidd  40504  3cubeslem3r  40509  pellexlem6  40656  pellfund14  40720  sqrtcval  41249  binomcxplemnotnn0  41974  reclimc  43194  stoweidlem13  43554  stirlinglem5  43619  etransclem46  43821  2zrngagrp  45501  altgsumbcALT  45689  line2ylem  46097
  Copyright terms: Public domain W3C validator