MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negidd Structured version   Visualization version   GIF version

Theorem negidd 11252
Description: Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
negidd (𝜑 → (𝐴 + -𝐴) = 0)

Proof of Theorem negidd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 negid 11198 . 2 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
31, 2syl 17 1 (𝜑 → (𝐴 + -𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  0cc0 10802   + caddc 10805  -cneg 11136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138
This theorem is referenced by:  xnegid  12901  xpncan  12914  moddvds  15902  pwp1fsum  16028  bitsres  16108  pcadd2  16519  zaddablx  19388  zringinvg  20599  ditgsplit  24930  dvferm2lem  25055  vieta1  25377  geolim3  25404  ulmshft  25454  cxpneg  25741  dcubic1lem  25898  lgamgulmlem1  26083  archiabllem2c  31351  signsply0  32430  knoppndvlem14  34632  poimir  35737  itgaddnclem2  35763  dffltz  40387  negexpidd  40420  3cubeslem3r  40425  pellexlem6  40572  pellfund14  40636  sqrtcval  41138  binomcxplemnotnn0  41863  reclimc  43084  stoweidlem13  43444  stirlinglem5  43509  etransclem46  43711  2zrngagrp  45389  altgsumbcALT  45577  line2ylem  45985
  Copyright terms: Public domain W3C validator