![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sincossq | Structured version Visualization version GIF version |
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
sincossq | β’ (π΄ β β β (((sinβπ΄)β2) + ((cosβπ΄)β2)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11460 | . . 3 β’ (π΄ β β β -π΄ β β) | |
2 | cosadd 16108 | . . 3 β’ ((π΄ β β β§ -π΄ β β) β (cosβ(π΄ + -π΄)) = (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄)))) | |
3 | 1, 2 | mpdan 686 | . 2 β’ (π΄ β β β (cosβ(π΄ + -π΄)) = (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄)))) |
4 | negid 11507 | . . . 4 β’ (π΄ β β β (π΄ + -π΄) = 0) | |
5 | 4 | fveq2d 6896 | . . 3 β’ (π΄ β β β (cosβ(π΄ + -π΄)) = (cosβ0)) |
6 | cos0 16093 | . . 3 β’ (cosβ0) = 1 | |
7 | 5, 6 | eqtrdi 2789 | . 2 β’ (π΄ β β β (cosβ(π΄ + -π΄)) = 1) |
8 | sincl 16069 | . . . . 5 β’ (π΄ β β β (sinβπ΄) β β) | |
9 | 8 | sqcld 14109 | . . . 4 β’ (π΄ β β β ((sinβπ΄)β2) β β) |
10 | coscl 16070 | . . . . 5 β’ (π΄ β β β (cosβπ΄) β β) | |
11 | 10 | sqcld 14109 | . . . 4 β’ (π΄ β β β ((cosβπ΄)β2) β β) |
12 | 9, 11 | addcomd 11416 | . . 3 β’ (π΄ β β β (((sinβπ΄)β2) + ((cosβπ΄)β2)) = (((cosβπ΄)β2) + ((sinβπ΄)β2))) |
13 | 10 | sqvald 14108 | . . . . 5 β’ (π΄ β β β ((cosβπ΄)β2) = ((cosβπ΄) Β· (cosβπ΄))) |
14 | cosneg 16090 | . . . . . 6 β’ (π΄ β β β (cosβ-π΄) = (cosβπ΄)) | |
15 | 14 | oveq2d 7425 | . . . . 5 β’ (π΄ β β β ((cosβπ΄) Β· (cosβ-π΄)) = ((cosβπ΄) Β· (cosβπ΄))) |
16 | 13, 15 | eqtr4d 2776 | . . . 4 β’ (π΄ β β β ((cosβπ΄)β2) = ((cosβπ΄) Β· (cosβ-π΄))) |
17 | 8 | sqvald 14108 | . . . . . 6 β’ (π΄ β β β ((sinβπ΄)β2) = ((sinβπ΄) Β· (sinβπ΄))) |
18 | sinneg 16089 | . . . . . . . . 9 β’ (π΄ β β β (sinβ-π΄) = -(sinβπ΄)) | |
19 | 18 | negeqd 11454 | . . . . . . . 8 β’ (π΄ β β β -(sinβ-π΄) = --(sinβπ΄)) |
20 | 8 | negnegd 11562 | . . . . . . . 8 β’ (π΄ β β β --(sinβπ΄) = (sinβπ΄)) |
21 | 19, 20 | eqtrd 2773 | . . . . . . 7 β’ (π΄ β β β -(sinβ-π΄) = (sinβπ΄)) |
22 | 21 | oveq2d 7425 | . . . . . 6 β’ (π΄ β β β ((sinβπ΄) Β· -(sinβ-π΄)) = ((sinβπ΄) Β· (sinβπ΄))) |
23 | 17, 22 | eqtr4d 2776 | . . . . 5 β’ (π΄ β β β ((sinβπ΄)β2) = ((sinβπ΄) Β· -(sinβ-π΄))) |
24 | 1 | sincld 16073 | . . . . . 6 β’ (π΄ β β β (sinβ-π΄) β β) |
25 | 8, 24 | mulneg2d 11668 | . . . . 5 β’ (π΄ β β β ((sinβπ΄) Β· -(sinβ-π΄)) = -((sinβπ΄) Β· (sinβ-π΄))) |
26 | 23, 25 | eqtrd 2773 | . . . 4 β’ (π΄ β β β ((sinβπ΄)β2) = -((sinβπ΄) Β· (sinβ-π΄))) |
27 | 16, 26 | oveq12d 7427 | . . 3 β’ (π΄ β β β (((cosβπ΄)β2) + ((sinβπ΄)β2)) = (((cosβπ΄) Β· (cosβ-π΄)) + -((sinβπ΄) Β· (sinβ-π΄)))) |
28 | 1 | coscld 16074 | . . . . 5 β’ (π΄ β β β (cosβ-π΄) β β) |
29 | 10, 28 | mulcld 11234 | . . . 4 β’ (π΄ β β β ((cosβπ΄) Β· (cosβ-π΄)) β β) |
30 | 8, 24 | mulcld 11234 | . . . 4 β’ (π΄ β β β ((sinβπ΄) Β· (sinβ-π΄)) β β) |
31 | 29, 30 | negsubd 11577 | . . 3 β’ (π΄ β β β (((cosβπ΄) Β· (cosβ-π΄)) + -((sinβπ΄) Β· (sinβ-π΄))) = (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄)))) |
32 | 12, 27, 31 | 3eqtrrd 2778 | . 2 β’ (π΄ β β β (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄))) = (((sinβπ΄)β2) + ((cosβπ΄)β2))) |
33 | 3, 7, 32 | 3eqtr3rd 2782 | 1 β’ (π΄ β β β (((sinβπ΄)β2) + ((cosβπ΄)β2)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 βcc 11108 0cc0 11110 1c1 11111 + caddc 11113 Β· cmul 11115 β cmin 11444 -cneg 11445 2c2 12267 βcexp 14027 sincsin 16007 cosccos 16008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-ico 13330 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-sin 16013 df-cos 16014 |
This theorem is referenced by: cos2t 16121 cos2tsin 16122 sinbnd 16123 cosbnd 16124 absefi 16139 sinhalfpilem 25973 sincos6thpi 26025 efif1olem4 26054 heron 26343 asinsin 26397 atandmtan 26425 basellem8 26592 sin2h 36478 tan2h 36480 dvtan 36538 itgsinexp 44671 onetansqsecsq 47806 cotsqcscsq 47807 |
Copyright terms: Public domain | W3C validator |