![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sincossq | Structured version Visualization version GIF version |
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
sincossq | β’ (π΄ β β β (((sinβπ΄)β2) + ((cosβπ΄)β2)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11464 | . . 3 β’ (π΄ β β β -π΄ β β) | |
2 | cosadd 16115 | . . 3 β’ ((π΄ β β β§ -π΄ β β) β (cosβ(π΄ + -π΄)) = (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄)))) | |
3 | 1, 2 | mpdan 684 | . 2 β’ (π΄ β β β (cosβ(π΄ + -π΄)) = (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄)))) |
4 | negid 11511 | . . . 4 β’ (π΄ β β β (π΄ + -π΄) = 0) | |
5 | 4 | fveq2d 6889 | . . 3 β’ (π΄ β β β (cosβ(π΄ + -π΄)) = (cosβ0)) |
6 | cos0 16100 | . . 3 β’ (cosβ0) = 1 | |
7 | 5, 6 | eqtrdi 2782 | . 2 β’ (π΄ β β β (cosβ(π΄ + -π΄)) = 1) |
8 | sincl 16076 | . . . . 5 β’ (π΄ β β β (sinβπ΄) β β) | |
9 | 8 | sqcld 14114 | . . . 4 β’ (π΄ β β β ((sinβπ΄)β2) β β) |
10 | coscl 16077 | . . . . 5 β’ (π΄ β β β (cosβπ΄) β β) | |
11 | 10 | sqcld 14114 | . . . 4 β’ (π΄ β β β ((cosβπ΄)β2) β β) |
12 | 9, 11 | addcomd 11420 | . . 3 β’ (π΄ β β β (((sinβπ΄)β2) + ((cosβπ΄)β2)) = (((cosβπ΄)β2) + ((sinβπ΄)β2))) |
13 | 10 | sqvald 14113 | . . . . 5 β’ (π΄ β β β ((cosβπ΄)β2) = ((cosβπ΄) Β· (cosβπ΄))) |
14 | cosneg 16097 | . . . . . 6 β’ (π΄ β β β (cosβ-π΄) = (cosβπ΄)) | |
15 | 14 | oveq2d 7421 | . . . . 5 β’ (π΄ β β β ((cosβπ΄) Β· (cosβ-π΄)) = ((cosβπ΄) Β· (cosβπ΄))) |
16 | 13, 15 | eqtr4d 2769 | . . . 4 β’ (π΄ β β β ((cosβπ΄)β2) = ((cosβπ΄) Β· (cosβ-π΄))) |
17 | 8 | sqvald 14113 | . . . . . 6 β’ (π΄ β β β ((sinβπ΄)β2) = ((sinβπ΄) Β· (sinβπ΄))) |
18 | sinneg 16096 | . . . . . . . . 9 β’ (π΄ β β β (sinβ-π΄) = -(sinβπ΄)) | |
19 | 18 | negeqd 11458 | . . . . . . . 8 β’ (π΄ β β β -(sinβ-π΄) = --(sinβπ΄)) |
20 | 8 | negnegd 11566 | . . . . . . . 8 β’ (π΄ β β β --(sinβπ΄) = (sinβπ΄)) |
21 | 19, 20 | eqtrd 2766 | . . . . . . 7 β’ (π΄ β β β -(sinβ-π΄) = (sinβπ΄)) |
22 | 21 | oveq2d 7421 | . . . . . 6 β’ (π΄ β β β ((sinβπ΄) Β· -(sinβ-π΄)) = ((sinβπ΄) Β· (sinβπ΄))) |
23 | 17, 22 | eqtr4d 2769 | . . . . 5 β’ (π΄ β β β ((sinβπ΄)β2) = ((sinβπ΄) Β· -(sinβ-π΄))) |
24 | 1 | sincld 16080 | . . . . . 6 β’ (π΄ β β β (sinβ-π΄) β β) |
25 | 8, 24 | mulneg2d 11672 | . . . . 5 β’ (π΄ β β β ((sinβπ΄) Β· -(sinβ-π΄)) = -((sinβπ΄) Β· (sinβ-π΄))) |
26 | 23, 25 | eqtrd 2766 | . . . 4 β’ (π΄ β β β ((sinβπ΄)β2) = -((sinβπ΄) Β· (sinβ-π΄))) |
27 | 16, 26 | oveq12d 7423 | . . 3 β’ (π΄ β β β (((cosβπ΄)β2) + ((sinβπ΄)β2)) = (((cosβπ΄) Β· (cosβ-π΄)) + -((sinβπ΄) Β· (sinβ-π΄)))) |
28 | 1 | coscld 16081 | . . . . 5 β’ (π΄ β β β (cosβ-π΄) β β) |
29 | 10, 28 | mulcld 11238 | . . . 4 β’ (π΄ β β β ((cosβπ΄) Β· (cosβ-π΄)) β β) |
30 | 8, 24 | mulcld 11238 | . . . 4 β’ (π΄ β β β ((sinβπ΄) Β· (sinβ-π΄)) β β) |
31 | 29, 30 | negsubd 11581 | . . 3 β’ (π΄ β β β (((cosβπ΄) Β· (cosβ-π΄)) + -((sinβπ΄) Β· (sinβ-π΄))) = (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄)))) |
32 | 12, 27, 31 | 3eqtrrd 2771 | . 2 β’ (π΄ β β β (((cosβπ΄) Β· (cosβ-π΄)) β ((sinβπ΄) Β· (sinβ-π΄))) = (((sinβπ΄)β2) + ((cosβπ΄)β2))) |
33 | 3, 7, 32 | 3eqtr3rd 2775 | 1 β’ (π΄ β β β (((sinβπ΄)β2) + ((cosβπ΄)β2)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6537 (class class class)co 7405 βcc 11110 0cc0 11112 1c1 11113 + caddc 11115 Β· cmul 11117 β cmin 11448 -cneg 11449 2c2 12271 βcexp 14032 sincsin 16013 cosccos 16014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-ico 13336 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-sin 16019 df-cos 16020 |
This theorem is referenced by: cos2t 16128 cos2tsin 16129 sinbnd 16130 cosbnd 16131 absefi 16146 sinhalfpilem 26353 sincos6thpi 26405 efif1olem4 26434 heron 26725 asinsin 26779 atandmtan 26807 basellem8 26975 sin2h 36991 tan2h 36993 dvtan 37051 itgsinexp 45240 onetansqsecsq 48077 cotsqcscsq 48078 |
Copyright terms: Public domain | W3C validator |