MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincossq Structured version   Visualization version   GIF version

Theorem sincossq 15813
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
Assertion
Ref Expression
sincossq (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)

Proof of Theorem sincossq
StepHypRef Expression
1 negcl 11151 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 cosadd 15802 . . 3 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
31, 2mpdan 683 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
4 negid 11198 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
54fveq2d 6760 . . 3 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = (cos‘0))
6 cos0 15787 . . 3 (cos‘0) = 1
75, 6eqtrdi 2795 . 2 (𝐴 ∈ ℂ → (cos‘(𝐴 + -𝐴)) = 1)
8 sincl 15763 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
98sqcld 13790 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
10 coscl 15764 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
1110sqcld 13790 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
129, 11addcomd 11107 . . 3 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
1310sqvald 13789 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴)))
14 cosneg 15784 . . . . . 6 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
1514oveq2d 7271 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) = ((cos‘𝐴) · (cos‘𝐴)))
1613, 15eqtr4d 2781 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘-𝐴)))
178sqvald 13789 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴)))
18 sinneg 15783 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
1918negeqd 11145 . . . . . . . 8 (𝐴 ∈ ℂ → -(sin‘-𝐴) = --(sin‘𝐴))
208negnegd 11253 . . . . . . . 8 (𝐴 ∈ ℂ → --(sin‘𝐴) = (sin‘𝐴))
2119, 20eqtrd 2778 . . . . . . 7 (𝐴 ∈ ℂ → -(sin‘-𝐴) = (sin‘𝐴))
2221oveq2d 7271 . . . . . 6 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = ((sin‘𝐴) · (sin‘𝐴)))
2317, 22eqtr4d 2781 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · -(sin‘-𝐴)))
241sincld 15767 . . . . . 6 (𝐴 ∈ ℂ → (sin‘-𝐴) ∈ ℂ)
258, 24mulneg2d 11359 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴) · -(sin‘-𝐴)) = -((sin‘𝐴) · (sin‘-𝐴)))
2623, 25eqtrd 2778 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = -((sin‘𝐴) · (sin‘-𝐴)))
2716, 26oveq12d 7273 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))))
281coscld 15768 . . . . 5 (𝐴 ∈ ℂ → (cos‘-𝐴) ∈ ℂ)
2910, 28mulcld 10926 . . . 4 (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘-𝐴)) ∈ ℂ)
308, 24mulcld 10926 . . . 4 (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘-𝐴)) ∈ ℂ)
3129, 30negsubd 11268 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) + -((sin‘𝐴) · (sin‘-𝐴))) = (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))))
3212, 27, 313eqtrrd 2783 . 2 (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘-𝐴)) − ((sin‘𝐴) · (sin‘-𝐴))) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
333, 7, 323eqtr3rd 2787 1 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  2c2 11958  cexp 13710  sincsin 15701  cosccos 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708
This theorem is referenced by:  cos2t  15815  cos2tsin  15816  sinbnd  15817  cosbnd  15818  absefi  15833  sinhalfpilem  25525  sincos6thpi  25577  efif1olem4  25606  heron  25893  asinsin  25947  atandmtan  25975  basellem8  26142  sin2h  35694  tan2h  35696  dvtan  35754  itgsinexp  43386  onetansqsecsq  46349  cotsqcscsq  46350
  Copyright terms: Public domain W3C validator