| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsno | Structured version Visualization version GIF version | ||
| Description: A positive surreal integer is a surreal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| nnsno | ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssno 28255 | . 2 ⊢ ℕs ⊆ No | |
| 2 | 1 | sseli 3939 | 1 ⊢ (𝐴 ∈ ℕs → 𝐴 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 No csur 27584 ℕscnns 28247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27587 df-slt 27588 df-bday 27589 df-sslt 27727 df-scut 27729 df-0s 27773 df-1s 27774 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-norec2 27896 df-adds 27907 df-n0s 28248 df-nns 28249 |
| This theorem is referenced by: nnsnod 28259 nnsgt0 28271 nn1m1nns 28303 nnm1n0s 28304 eucliddivs 28305 nnzs 28314 znegscl 28320 zmulscld 28325 elzn0s 28326 eln0zs 28328 elnnzs 28329 2sno 28346 recut 28400 0reno 28401 renegscl 28402 readdscl 28403 remulscllem1 28404 remulscllem2 28405 remulscl 28406 |
| Copyright terms: Public domain | W3C validator |