MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssz Structured version   Visualization version   GIF version

Theorem nnssz 12551
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
Assertion
Ref Expression
nnssz ℕ ⊆ ℤ

Proof of Theorem nnssz
StepHypRef Expression
1 nnz 12550 . 2 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
21ssriv 3950 1 ℕ ⊆ ℤ
Colors of variables: wff setvar class
Syntax hints:  wss 3914  cn 12186  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-rrecex 11140  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-neg 11408  df-nn 12187  df-z 12530
This theorem is referenced by:  nn0ssz  12552  nnzOLD  12553  nnzi  12557  zmin  12903  nnssq  12917  divcnvshft  15821  znnen  16180  nthruc  16220  alzdvds  16290  evennn2n  16321  lcmfnnval  16594  lcmfnncl  16599  pclem  16809  prmreclem1  16887  ftalem5  26987  2sqreunnltblem  27362  archiabllem1b  33146  reprsuc  34606  divcnvlin  35720  aks6d1c2  42118  aks6d1c6lem5  42165  aks6d1c7lem1  42168  diophin  42760  hashnzfzclim  44311  sinnpoly  46892
  Copyright terms: Public domain W3C validator