Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssz | Structured version Visualization version GIF version |
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
nnssz | ⊢ ℕ ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11695 | . . 3 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
2 | 3mix2 1329 | . . 3 ⊢ (𝑥 ∈ ℕ → (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)) | |
3 | elz 12036 | . . 3 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ))) | |
4 | 1, 2, 3 | sylanbrc 586 | . 2 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) |
5 | 4 | ssriv 3899 | 1 ⊢ ℕ ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1084 = wceq 1539 ∈ wcel 2112 ⊆ wss 3861 ℝcr 10588 0cc0 10589 -cneg 10923 ℕcn 11688 ℤcz 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 ax-un 7466 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-i2m1 10657 ax-1ne0 10658 ax-rrecex 10661 ax-cnre 10662 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-om 7587 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-neg 10925 df-nn 11689 df-z 12035 |
This theorem is referenced by: nn0ssz 12056 nnz 12057 nnzi 12059 zmin 12398 nnssq 12412 divcnvshft 15272 znnen 15627 nthruc 15667 alzdvds 15735 evennn2n 15766 lcmfnnval 16035 lcmfnncl 16040 pclem 16245 prmreclem1 16322 ftalem5 25776 2sqreunnltblem 26149 archiabllem1b 30986 reprsuc 32128 divcnvlin 33227 diophin 40132 hashnzfzclim 41445 |
Copyright terms: Public domain | W3C validator |