Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssz | Structured version Visualization version GIF version |
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
nnssz | ⊢ ℕ ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12026 | . . 3 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
2 | 3mix2 1331 | . . 3 ⊢ (𝑥 ∈ ℕ → (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)) | |
3 | elz 12367 | . . 3 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ))) | |
4 | 1, 2, 3 | sylanbrc 584 | . 2 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) |
5 | 4 | ssriv 3930 | 1 ⊢ ℕ ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1086 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 ℝcr 10916 0cc0 10917 -cneg 11252 ℕcn 12019 ℤcz 12365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-i2m1 10985 ax-1ne0 10986 ax-rrecex 10989 ax-cnre 10990 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-neg 11254 df-nn 12020 df-z 12366 |
This theorem is referenced by: nn0ssz 12387 nnz 12388 nnzi 12390 zmin 12730 nnssq 12744 divcnvshft 15612 znnen 15966 nthruc 16006 alzdvds 16074 evennn2n 16105 lcmfnnval 16374 lcmfnncl 16379 pclem 16584 prmreclem1 16662 ftalem5 26271 2sqreunnltblem 26644 archiabllem1b 31491 reprsuc 32640 divcnvlin 33743 diophin 40631 hashnzfzclim 41978 |
Copyright terms: Public domain | W3C validator |