| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssz | Structured version Visualization version GIF version | ||
| Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
| Ref | Expression |
|---|---|
| nnssz | ⊢ ℕ ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 12496 | . 2 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) | |
| 2 | 1 | ssriv 3934 | 1 ⊢ ℕ ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 ℕcn 12132 ℤcz 12475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-i2m1 11081 ax-1ne0 11082 ax-rrecex 11085 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-neg 11354 df-nn 12133 df-z 12476 |
| This theorem is referenced by: nn0ssz 12498 nnzi 12502 zmin 12844 nnssq 12858 divcnvshft 15764 znnen 16123 nthruc 16163 alzdvds 16233 evennn2n 16264 lcmfnnval 16537 lcmfnncl 16542 pclem 16752 prmreclem1 16830 ftalem5 27015 2sqreunnltblem 27390 archiabllem1b 33168 reprsuc 34649 divcnvlin 35798 aks6d1c2 42243 aks6d1c6lem5 42290 aks6d1c7lem1 42293 diophin 42889 hashnzfzclim 44439 sinnpoly 47015 |
| Copyright terms: Public domain | W3C validator |