Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssz | Structured version Visualization version GIF version |
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
nnssz | ⊢ ℕ ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11963 | . . 3 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
2 | 3mix2 1329 | . . 3 ⊢ (𝑥 ∈ ℕ → (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)) | |
3 | elz 12304 | . . 3 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ))) | |
4 | 1, 2, 3 | sylanbrc 582 | . 2 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) |
5 | 4 | ssriv 3929 | 1 ⊢ ℕ ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1084 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ℝcr 10854 0cc0 10855 -cneg 11189 ℕcn 11956 ℤcz 12302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rrecex 10927 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-neg 11191 df-nn 11957 df-z 12303 |
This theorem is referenced by: nn0ssz 12324 nnz 12325 nnzi 12327 zmin 12666 nnssq 12680 divcnvshft 15548 znnen 15902 nthruc 15942 alzdvds 16010 evennn2n 16041 lcmfnnval 16310 lcmfnncl 16315 pclem 16520 prmreclem1 16598 ftalem5 26207 2sqreunnltblem 26580 archiabllem1b 31425 reprsuc 32574 divcnvlin 33677 diophin 40574 hashnzfzclim 41893 |
Copyright terms: Public domain | W3C validator |