MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssz Structured version   Visualization version   GIF version

Theorem nnssz 12586
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
Assertion
Ref Expression
nnssz ℕ ⊆ ℤ

Proof of Theorem nnssz
StepHypRef Expression
1 nnz 12585 . 2 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
21ssriv 3987 1 ℕ ⊆ ℤ
Colors of variables: wff setvar class
Syntax hints:  wss 3949  cn 12218  cz 12564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-i2m1 11182  ax-1ne0 11183  ax-rrecex 11186  ax-cnre 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-neg 11453  df-nn 12219  df-z 12565
This theorem is referenced by:  nn0ssz  12587  nnzOLD  12588  nnzi  12592  zmin  12934  nnssq  12948  divcnvshft  15807  znnen  16161  nthruc  16201  alzdvds  16269  evennn2n  16300  lcmfnnval  16567  lcmfnncl  16572  pclem  16777  prmreclem1  16855  ftalem5  26815  2sqreunnltblem  27188  archiabllem1b  32606  reprsuc  33923  divcnvlin  35004  diophin  41814  hashnzfzclim  43385
  Copyright terms: Public domain W3C validator