MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssz Structured version   Visualization version   GIF version

Theorem nnssz 12497
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
Assertion
Ref Expression
nnssz ℕ ⊆ ℤ

Proof of Theorem nnssz
StepHypRef Expression
1 nnz 12496 . 2 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
21ssriv 3934 1 ℕ ⊆ ℤ
Colors of variables: wff setvar class
Syntax hints:  wss 3898  cn 12132  cz 12475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-i2m1 11081  ax-1ne0 11082  ax-rrecex 11085  ax-cnre 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-neg 11354  df-nn 12133  df-z 12476
This theorem is referenced by:  nn0ssz  12498  nnzi  12502  zmin  12844  nnssq  12858  divcnvshft  15764  znnen  16123  nthruc  16163  alzdvds  16233  evennn2n  16264  lcmfnnval  16537  lcmfnncl  16542  pclem  16752  prmreclem1  16830  ftalem5  27015  2sqreunnltblem  27390  archiabllem1b  33168  reprsuc  34649  divcnvlin  35798  aks6d1c2  42243  aks6d1c6lem5  42290  aks6d1c7lem1  42293  diophin  42889  hashnzfzclim  44439  sinnpoly  47015
  Copyright terms: Public domain W3C validator