![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnssz | Structured version Visualization version GIF version |
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
nnssz | ⊢ ℕ ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11498 | . . 3 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
2 | 3mix2 1324 | . . 3 ⊢ (𝑥 ∈ ℕ → (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)) | |
3 | elz 11836 | . . 3 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ))) | |
4 | 1, 2, 3 | sylanbrc 583 | . 2 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) |
5 | 4 | ssriv 3897 | 1 ⊢ ℕ ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1079 = wceq 1522 ∈ wcel 2081 ⊆ wss 3863 ℝcr 10387 0cc0 10388 -cneg 10723 ℕcn 11491 ℤcz 11834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-i2m1 10456 ax-1ne0 10457 ax-rrecex 10460 ax-cnre 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-ov 7024 df-om 7442 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-neg 10725 df-nn 11492 df-z 11835 |
This theorem is referenced by: nn0ssz 11857 nnz 11858 nnzi 11860 zmin 12198 nnssq 12212 divcnvshft 15048 znnen 15403 nthruc 15443 alzdvds 15508 evennn2n 15538 lcmfnnval 15802 lcmfnncl 15807 pclem 16009 prmreclem1 16086 ftalem5 25341 2sqreunnltblem 25714 archiabllem1b 30464 reprsuc 31508 divcnvlin 32578 dffltz 38793 diophin 38879 hashnzfzclim 40217 |
Copyright terms: Public domain | W3C validator |