Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssz | Structured version Visualization version GIF version |
Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
nnssz | ⊢ ℕ ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12081 | . . 3 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
2 | 3mix2 1330 | . . 3 ⊢ (𝑥 ∈ ℕ → (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)) | |
3 | elz 12422 | . . 3 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ))) | |
4 | 1, 2, 3 | sylanbrc 583 | . 2 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) |
5 | 4 | ssriv 3936 | 1 ⊢ ℕ ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ℝcr 10971 0cc0 10972 -cneg 11307 ℕcn 12074 ℤcz 12420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-i2m1 11040 ax-1ne0 11041 ax-rrecex 11044 ax-cnre 11045 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-neg 11309 df-nn 12075 df-z 12421 |
This theorem is referenced by: nn0ssz 12442 nnz 12443 nnzi 12445 zmin 12785 nnssq 12799 divcnvshft 15666 znnen 16020 nthruc 16060 alzdvds 16128 evennn2n 16159 lcmfnnval 16426 lcmfnncl 16431 pclem 16636 prmreclem1 16714 ftalem5 26332 2sqreunnltblem 26705 archiabllem1b 31733 reprsuc 32895 divcnvlin 33988 diophin 40864 hashnzfzclim 42269 |
Copyright terms: Public domain | W3C validator |