![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qus0g | Structured version Visualization version GIF version |
Description: The identity element of a quotient group. (Contributed by Thierry Arnoux, 13-Mar-2025.) |
Ref | Expression |
---|---|
qus0g.1 | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
Ref | Expression |
---|---|
qus0g | ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → (0g‘𝑄) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
3 | nsgsubg 19218 | . . 3 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
4 | subgrcl 19191 | . . . 4 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
5 | eqid 2740 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 5 | grpidcl 19025 | . . . 4 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
7 | 3, 4, 6 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → (0g‘𝐺) ∈ (Base‘𝐺)) |
8 | 1, 2, 3, 7 | quslsm 33418 | . 2 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = ({(0g‘𝐺)} (LSSum‘𝐺)𝑁)) |
9 | qus0g.1 | . . 3 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
10 | 9, 5 | qus0 19249 | . 2 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = (0g‘𝑄)) |
11 | 5, 2 | lsm02 19734 | . . 3 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) = 𝑁) |
12 | 3, 11 | syl 17 | . 2 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) = 𝑁) |
13 | 8, 10, 12 | 3eqtr3d 2788 | 1 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → (0g‘𝑄) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 ‘cfv 6576 (class class class)co 7451 [cec 8764 Basecbs 17278 0gc0g 17519 /s cqus 17585 Grpcgrp 18993 SubGrpcsubg 19180 NrmSGrpcnsg 19181 ~QG cqg 19182 LSSumclsm 19696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5304 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-tpos 8270 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-1o 8525 df-er 8766 df-ec 8768 df-qs 8772 df-en 9007 df-dom 9008 df-sdom 9009 df-fin 9010 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-7 12366 df-8 12367 df-9 12368 df-n0 12559 df-z 12646 df-dec 12766 df-uz 12911 df-fz 13579 df-struct 17214 df-sets 17231 df-slot 17249 df-ndx 17261 df-base 17279 df-ress 17308 df-plusg 17344 df-mulr 17345 df-sca 17347 df-vsca 17348 df-ip 17349 df-tset 17350 df-ple 17351 df-ds 17353 df-0g 17521 df-imas 17588 df-qus 17589 df-mgm 18698 df-sgrp 18777 df-mnd 18793 df-submnd 18839 df-grp 18996 df-minusg 18997 df-subg 19183 df-nsg 19184 df-eqg 19185 df-oppg 19406 df-lsm 19698 |
This theorem is referenced by: qsdrnglem2 33509 |
Copyright terms: Public domain | W3C validator |