Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgrpsimpgd Structured version   Visualization version   GIF version

Theorem prmgrpsimpgd 19214
 Description: A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
prmgrpsimpgd.1 𝐵 = (Base‘𝐺)
prmgrpsimpgd.2 (𝜑𝐺 ∈ Grp)
prmgrpsimpgd.3 (𝜑 → (♯‘𝐵) ∈ ℙ)
Assertion
Ref Expression
prmgrpsimpgd (𝜑𝐺 ∈ SimpGrp)

Proof of Theorem prmgrpsimpgd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmgrpsimpgd.1 . 2 𝐵 = (Base‘𝐺)
2 eqid 2821 . 2 (0g𝐺) = (0g𝐺)
3 prmgrpsimpgd.2 . 2 (𝜑𝐺 ∈ Grp)
4 fveq2 6643 . . . . . 6 ({(0g𝐺)} = 𝐵 → (♯‘{(0g𝐺)}) = (♯‘𝐵))
54adantl 485 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = (♯‘𝐵))
62fvexi 6657 . . . . . 6 (0g𝐺) ∈ V
7 hashsng 13714 . . . . . 6 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
86, 7mp1i 13 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = 1)
95, 8eqtr3d 2858 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) = 1)
10 prmgrpsimpgd.3 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℙ)
1110adantr 484 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) ∈ ℙ)
129, 11eqeltrrd 2913 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → 1 ∈ ℙ)
13 1nprm 16000 . . . 4 ¬ 1 ∈ ℙ
1413a1i 11 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → ¬ 1 ∈ ℙ)
1512, 14pm2.65da 816 . 2 (𝜑 → ¬ {(0g𝐺)} = 𝐵)
16 nsgsubg 18288 . . 3 (𝑥 ∈ (NrmSGrp‘𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
17 eqid 2821 . . . . . . . 8 (♯‘𝐵) = (♯‘𝐵)
181fvexi 6657 . . . . . . . . . 10 𝐵 ∈ V
1918a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
20 prmnn 15995 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℙ → (♯‘𝐵) ∈ ℕ)
2110, 20syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221nnnn0d 11933 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
23 hashvnfin 13705 . . . . . . . . 9 ((𝐵 ∈ V ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2419, 22, 23syl2anc 587 . . . . . . . 8 (𝜑 → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2517, 24mpi 20 . . . . . . 7 (𝜑𝐵 ∈ Fin)
2625ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝐵 ∈ Fin)
271subgss 18258 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝐵)
2827ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥𝐵)
29 simpr 488 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (♯‘𝑥) = (♯‘𝐵))
3026, 28, 29phphashrd 13809 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥 = 𝐵)
3130olcd 871 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
32 simpr 488 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (♯‘𝑥) = 1)
332subg0cl 18265 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑥)
3433ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (0g𝐺) ∈ 𝑥)
35 vex 3474 . . . . . . 7 𝑥 ∈ V
3635a1i 11 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 ∈ V)
3732, 34, 36hash1elsn 13716 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 = {(0g𝐺)})
3837orcd 870 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
391lagsubg 18320 . . . . . . 7 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝑥) ∥ (♯‘𝐵))
4025, 39sylan2 595 . . . . . 6 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝜑) → (♯‘𝑥) ∥ (♯‘𝐵))
4140ancoms 462 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∥ (♯‘𝐵))
4210adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝐵) ∈ ℙ)
4325adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝐵 ∈ Fin)
4427adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥𝐵)
4543, 44ssfid 8717 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ Fin)
46 hashcl 13701 . . . . . . . 8 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
4745, 46syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ0)
4833adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ 𝑥)
4935a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ V)
5048, 49hashelne0d 13713 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ¬ (♯‘𝑥) = 0)
5150neqned 3014 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ≠ 0)
52 elnnne0 11889 . . . . . . 7 ((♯‘𝑥) ∈ ℕ ↔ ((♯‘𝑥) ∈ ℕ0 ∧ (♯‘𝑥) ≠ 0))
5347, 51, 52sylanbrc 586 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ)
54 dvdsprime 16008 . . . . . 6 (((♯‘𝐵) ∈ ℙ ∧ (♯‘𝑥) ∈ ℕ) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5542, 53, 54syl2anc 587 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5641, 55mpbid 235 . . . 4 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1))
5731, 38, 56mpjaodan 956 . . 3 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
5816, 57sylan2 595 . 2 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
591, 2, 3, 15, 582nsgsimpgd 19202 1 (𝜑𝐺 ∈ SimpGrp)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  Vcvv 3471   ⊆ wss 3910  {csn 4540   class class class wbr 5039  ‘cfv 6328  Fincfn 8484  0cc0 10514  1c1 10515  ℕcn 11615  ℕ0cn0 11875  ♯chash 13674   ∥ cdvds 15586  ℙcprime 15992  Basecbs 16461  0gc0g 16691  Grpcgrp 18081  SubGrpcsubg 18251  NrmSGrpcnsg 18252  SimpGrpcsimpg 19190 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-ec 8266  df-qs 8270  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-fz 12876  df-fzo 13017  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-dvds 15587  df-prm 15993  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-sbg 18086  df-subg 18254  df-nsg 18255  df-eqg 18256  df-simpg 19191 This theorem is referenced by:  ablsimpgd  19216  prmsimpcyc  30863
 Copyright terms: Public domain W3C validator