MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgrpsimpgd Structured version   Visualization version   GIF version

Theorem prmgrpsimpgd 19983
Description: A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
prmgrpsimpgd.1 𝐵 = (Base‘𝐺)
prmgrpsimpgd.2 (𝜑𝐺 ∈ Grp)
prmgrpsimpgd.3 (𝜑 → (♯‘𝐵) ∈ ℙ)
Assertion
Ref Expression
prmgrpsimpgd (𝜑𝐺 ∈ SimpGrp)

Proof of Theorem prmgrpsimpgd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmgrpsimpgd.1 . 2 𝐵 = (Base‘𝐺)
2 eqid 2732 . 2 (0g𝐺) = (0g𝐺)
3 prmgrpsimpgd.2 . 2 (𝜑𝐺 ∈ Grp)
4 fveq2 6891 . . . . . 6 ({(0g𝐺)} = 𝐵 → (♯‘{(0g𝐺)}) = (♯‘𝐵))
54adantl 482 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = (♯‘𝐵))
62fvexi 6905 . . . . . 6 (0g𝐺) ∈ V
7 hashsng 14328 . . . . . 6 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
86, 7mp1i 13 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = 1)
95, 8eqtr3d 2774 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) = 1)
10 prmgrpsimpgd.3 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℙ)
1110adantr 481 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) ∈ ℙ)
129, 11eqeltrrd 2834 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → 1 ∈ ℙ)
13 1nprm 16615 . . . 4 ¬ 1 ∈ ℙ
1413a1i 11 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → ¬ 1 ∈ ℙ)
1512, 14pm2.65da 815 . 2 (𝜑 → ¬ {(0g𝐺)} = 𝐵)
16 nsgsubg 19037 . . 3 (𝑥 ∈ (NrmSGrp‘𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
17 eqid 2732 . . . . . . . 8 (♯‘𝐵) = (♯‘𝐵)
181fvexi 6905 . . . . . . . . . 10 𝐵 ∈ V
1918a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
20 prmnn 16610 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℙ → (♯‘𝐵) ∈ ℕ)
2110, 20syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221nnnn0d 12531 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
23 hashvnfin 14319 . . . . . . . . 9 ((𝐵 ∈ V ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2419, 22, 23syl2anc 584 . . . . . . . 8 (𝜑 → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2517, 24mpi 20 . . . . . . 7 (𝜑𝐵 ∈ Fin)
2625ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝐵 ∈ Fin)
271subgss 19006 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝐵)
2827ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥𝐵)
29 simpr 485 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (♯‘𝑥) = (♯‘𝐵))
3026, 28, 29phphashrd 14427 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥 = 𝐵)
3130olcd 872 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
32 simpr 485 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (♯‘𝑥) = 1)
332subg0cl 19013 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑥)
3433ad2antlr 725 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (0g𝐺) ∈ 𝑥)
35 vex 3478 . . . . . . 7 𝑥 ∈ V
3635a1i 11 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 ∈ V)
3732, 34, 36hash1elsn 14330 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 = {(0g𝐺)})
3837orcd 871 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
391lagsubg 19071 . . . . . . 7 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝑥) ∥ (♯‘𝐵))
4025, 39sylan2 593 . . . . . 6 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝜑) → (♯‘𝑥) ∥ (♯‘𝐵))
4140ancoms 459 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∥ (♯‘𝐵))
4210adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝐵) ∈ ℙ)
4325adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝐵 ∈ Fin)
4427adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥𝐵)
4543, 44ssfid 9266 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ Fin)
46 hashcl 14315 . . . . . . . 8 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
4745, 46syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ0)
4833adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ 𝑥)
4935a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ V)
5048, 49hashelne0d 14327 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ¬ (♯‘𝑥) = 0)
5150neqned 2947 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ≠ 0)
52 elnnne0 12485 . . . . . . 7 ((♯‘𝑥) ∈ ℕ ↔ ((♯‘𝑥) ∈ ℕ0 ∧ (♯‘𝑥) ≠ 0))
5347, 51, 52sylanbrc 583 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ)
54 dvdsprime 16623 . . . . . 6 (((♯‘𝐵) ∈ ℙ ∧ (♯‘𝑥) ∈ ℕ) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5542, 53, 54syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5641, 55mpbid 231 . . . 4 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1))
5731, 38, 56mpjaodan 957 . . 3 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
5816, 57sylan2 593 . 2 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
591, 2, 3, 15, 582nsgsimpgd 19971 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  wss 3948  {csn 4628   class class class wbr 5148  cfv 6543  Fincfn 8938  0cc0 11109  1c1 11110  cn 12211  0cn0 12471  chash 14289  cdvds 16196  cprime 16607  Basecbs 17143  0gc0g 17384  Grpcgrp 18818  SubGrpcsubg 18999  NrmSGrpcnsg 19000  SimpGrpcsimpg 19959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-ec 8704  df-qs 8708  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-dvds 16197  df-prm 16608  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-grp 18821  df-minusg 18822  df-sbg 18823  df-subg 19002  df-nsg 19003  df-eqg 19004  df-simpg 19960
This theorem is referenced by:  ablsimpgd  19985  prmsimpcyc  32368
  Copyright terms: Public domain W3C validator