MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgrpsimpgd Structured version   Visualization version   GIF version

Theorem prmgrpsimpgd 20148
Description: A group of prime order is simple. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
prmgrpsimpgd.1 𝐵 = (Base‘𝐺)
prmgrpsimpgd.2 (𝜑𝐺 ∈ Grp)
prmgrpsimpgd.3 (𝜑 → (♯‘𝐵) ∈ ℙ)
Assertion
Ref Expression
prmgrpsimpgd (𝜑𝐺 ∈ SimpGrp)

Proof of Theorem prmgrpsimpgd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prmgrpsimpgd.1 . 2 𝐵 = (Base‘𝐺)
2 eqid 2734 . 2 (0g𝐺) = (0g𝐺)
3 prmgrpsimpgd.2 . 2 (𝜑𝐺 ∈ Grp)
4 fveq2 6906 . . . . . 6 ({(0g𝐺)} = 𝐵 → (♯‘{(0g𝐺)}) = (♯‘𝐵))
54adantl 481 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = (♯‘𝐵))
62fvexi 6920 . . . . . 6 (0g𝐺) ∈ V
7 hashsng 14404 . . . . . 6 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
86, 7mp1i 13 . . . . 5 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘{(0g𝐺)}) = 1)
95, 8eqtr3d 2776 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) = 1)
10 prmgrpsimpgd.3 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℙ)
1110adantr 480 . . . 4 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → (♯‘𝐵) ∈ ℙ)
129, 11eqeltrrd 2839 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → 1 ∈ ℙ)
13 1nprm 16712 . . . 4 ¬ 1 ∈ ℙ
1413a1i 11 . . 3 ((𝜑 ∧ {(0g𝐺)} = 𝐵) → ¬ 1 ∈ ℙ)
1512, 14pm2.65da 817 . 2 (𝜑 → ¬ {(0g𝐺)} = 𝐵)
16 nsgsubg 19188 . . 3 (𝑥 ∈ (NrmSGrp‘𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
17 eqid 2734 . . . . . . . 8 (♯‘𝐵) = (♯‘𝐵)
181fvexi 6920 . . . . . . . . . 10 𝐵 ∈ V
1918a1i 11 . . . . . . . . 9 (𝜑𝐵 ∈ V)
20 prmnn 16707 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℙ → (♯‘𝐵) ∈ ℕ)
2110, 20syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) ∈ ℕ)
2221nnnn0d 12584 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
23 hashvnfin 14395 . . . . . . . . 9 ((𝐵 ∈ V ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2419, 22, 23syl2anc 584 . . . . . . . 8 (𝜑 → ((♯‘𝐵) = (♯‘𝐵) → 𝐵 ∈ Fin))
2517, 24mpi 20 . . . . . . 7 (𝜑𝐵 ∈ Fin)
2625ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝐵 ∈ Fin)
271subgss 19157 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝐵)
2827ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥𝐵)
29 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (♯‘𝑥) = (♯‘𝐵))
3026, 28, 29phphashrd 14502 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → 𝑥 = 𝐵)
3130olcd 874 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = (♯‘𝐵)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
32 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (♯‘𝑥) = 1)
332subg0cl 19164 . . . . . . 7 (𝑥 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑥)
3433ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (0g𝐺) ∈ 𝑥)
35 vex 3481 . . . . . . 7 𝑥 ∈ V
3635a1i 11 . . . . . 6 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 ∈ V)
3732, 34, 36hash1elsn 14406 . . . . 5 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → 𝑥 = {(0g𝐺)})
3837orcd 873 . . . 4 (((𝜑𝑥 ∈ (SubGrp‘𝐺)) ∧ (♯‘𝑥) = 1) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
391lagsubg 19225 . . . . . . 7 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘𝑥) ∥ (♯‘𝐵))
4025, 39sylan2 593 . . . . . 6 ((𝑥 ∈ (SubGrp‘𝐺) ∧ 𝜑) → (♯‘𝑥) ∥ (♯‘𝐵))
4140ancoms 458 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∥ (♯‘𝐵))
4210adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝐵) ∈ ℙ)
4325adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝐵 ∈ Fin)
4427adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥𝐵)
4543, 44ssfid 9298 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ Fin)
46 hashcl 14391 . . . . . . . 8 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
4745, 46syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ0)
4833adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ 𝑥)
4935a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → 𝑥 ∈ V)
5048, 49hashelne0d 14403 . . . . . . . 8 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ¬ (♯‘𝑥) = 0)
5150neqned 2944 . . . . . . 7 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ≠ 0)
52 elnnne0 12537 . . . . . . 7 ((♯‘𝑥) ∈ ℕ ↔ ((♯‘𝑥) ∈ ℕ0 ∧ (♯‘𝑥) ≠ 0))
5347, 51, 52sylanbrc 583 . . . . . 6 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (♯‘𝑥) ∈ ℕ)
54 dvdsprime 16720 . . . . . 6 (((♯‘𝐵) ∈ ℙ ∧ (♯‘𝑥) ∈ ℕ) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5542, 53, 54syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) ∥ (♯‘𝐵) ↔ ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1)))
5641, 55mpbid 232 . . . 4 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → ((♯‘𝑥) = (♯‘𝐵) ∨ (♯‘𝑥) = 1))
5731, 38, 56mpjaodan 960 . . 3 ((𝜑𝑥 ∈ (SubGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
5816, 57sylan2 593 . 2 ((𝜑𝑥 ∈ (NrmSGrp‘𝐺)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
591, 2, 3, 15, 582nsgsimpgd 20136 1 (𝜑𝐺 ∈ SimpGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  Vcvv 3477  wss 3962  {csn 4630   class class class wbr 5147  cfv 6562  Fincfn 8983  0cc0 11152  1c1 11153  cn 12263  0cn0 12523  chash 14365  cdvds 16286  cprime 16704  Basecbs 17244  0gc0g 17485  Grpcgrp 18963  SubGrpcsubg 19150  NrmSGrpcnsg 19151  SimpGrpcsimpg 20124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-qs 8749  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-prm 16705  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-nsg 19154  df-eqg 19155  df-simpg 20125
This theorem is referenced by:  ablsimpgd  20150  prmsimpcyc  33216
  Copyright terms: Public domain W3C validator