Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqus0 | Structured version Visualization version GIF version |
Description: A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
Ref | Expression |
---|---|
nsgqus0.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
Ref | Expression |
---|---|
nsgqus0 | ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
2 | nsgsubg 18701 | . . 3 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
3 | eqid 2738 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | eqid 2738 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
5 | 3, 4 | lsm02 19193 | . . 3 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) = 𝑁) |
6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) = 𝑁) |
7 | nsgqus0.q | . . . . . 6 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
8 | 7, 3 | qus0 18729 | . . . . 5 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = (0g‘𝑄)) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = (0g‘𝑄)) |
10 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (SubGrp‘𝐺)) |
12 | subgrcl 18675 | . . . . . . . 8 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
13 | 2, 12 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝐺 ∈ Grp) |
15 | 10, 3 | grpidcl 18522 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
17 | 10, 4, 11, 16 | quslsm 31495 | . . . 4 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = ({(0g‘𝐺)} (LSSum‘𝐺)𝑁)) |
18 | 9, 17 | eqtr3d 2780 | . . 3 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g‘𝑄) = ({(0g‘𝐺)} (LSSum‘𝐺)𝑁)) |
19 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑄) = (0g‘𝑄) | |
20 | 19 | subg0cl 18678 | . . . 4 ⊢ (𝐹 ∈ (SubGrp‘𝑄) → (0g‘𝑄) ∈ 𝐹) |
21 | 20 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g‘𝑄) ∈ 𝐹) |
22 | 18, 21 | eqeltrrd 2840 | . 2 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) ∈ 𝐹) |
23 | 6, 22 | eqeltrrd 2840 | 1 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ‘cfv 6418 (class class class)co 7255 [cec 8454 Basecbs 16840 0gc0g 17067 /s cqus 17133 Grpcgrp 18492 SubGrpcsubg 18664 NrmSGrpcnsg 18665 ~QG cqg 18666 LSSumclsm 19154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-subg 18667 df-nsg 18668 df-eqg 18669 df-oppg 18865 df-lsm 19156 |
This theorem is referenced by: nsgmgclem 31498 nsgmgc 31499 nsgqusf1olem2 31501 nsgqusf1olem3 31502 |
Copyright terms: Public domain | W3C validator |