Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqus0 Structured version   Visualization version   GIF version

Theorem nsgqus0 33366
Description: A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypothesis
Ref Expression
nsgqus0.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
Assertion
Ref Expression
nsgqus0 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)

Proof of Theorem nsgqus0
StepHypRef Expression
1 simpl 482 . . 3 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
2 nsgsubg 19056 . . 3 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
3 eqid 2729 . . . 4 (0g𝐺) = (0g𝐺)
4 eqid 2729 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
53, 4lsm02 19570 . . 3 (𝑁 ∈ (SubGrp‘𝐺) → ({(0g𝐺)} (LSSum‘𝐺)𝑁) = 𝑁)
61, 2, 53syl 18 . 2 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g𝐺)} (LSSum‘𝐺)𝑁) = 𝑁)
7 nsgqus0.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
87, 3qus0 19087 . . . . 5 (𝑁 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑁) = (0g𝑄))
98adantr 480 . . . 4 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g𝐺)](𝐺 ~QG 𝑁) = (0g𝑄))
10 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
112adantr 480 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (SubGrp‘𝐺))
12 subgrcl 19029 . . . . . . . 8 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
132, 12syl 17 . . . . . . 7 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
1413adantr 480 . . . . . 6 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝐺 ∈ Grp)
1510, 3grpidcl 18863 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
1614, 15syl 17 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g𝐺) ∈ (Base‘𝐺))
1710, 4, 11, 16quslsm 33361 . . . 4 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g𝐺)](𝐺 ~QG 𝑁) = ({(0g𝐺)} (LSSum‘𝐺)𝑁))
189, 17eqtr3d 2766 . . 3 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g𝑄) = ({(0g𝐺)} (LSSum‘𝐺)𝑁))
19 eqid 2729 . . . . 5 (0g𝑄) = (0g𝑄)
2019subg0cl 19032 . . . 4 (𝐹 ∈ (SubGrp‘𝑄) → (0g𝑄) ∈ 𝐹)
2120adantl 481 . . 3 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g𝑄) ∈ 𝐹)
2218, 21eqeltrrd 2829 . 2 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g𝐺)} (LSSum‘𝐺)𝑁) ∈ 𝐹)
236, 22eqeltrrd 2829 1 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4579  cfv 6486  (class class class)co 7353  [cec 8630  Basecbs 17139  0gc0g 17362   /s cqus 17428  Grpcgrp 18831  SubGrpcsubg 19018  NrmSGrpcnsg 19019   ~QG cqg 19020  LSSumclsm 19532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-ec 8634  df-qs 8638  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-0g 17364  df-imas 17431  df-qus 17432  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-grp 18834  df-minusg 18835  df-subg 19021  df-nsg 19022  df-eqg 19023  df-oppg 19244  df-lsm 19534
This theorem is referenced by:  nsgmgclem  33367  nsgmgc  33368  nsgqusf1olem2  33370  nsgqusf1olem3  33371
  Copyright terms: Public domain W3C validator