Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqus0 Structured version   Visualization version   GIF version

Theorem nsgqus0 31128
Description: A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypothesis
Ref Expression
nsgqus0.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
Assertion
Ref Expression
nsgqus0 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)

Proof of Theorem nsgqus0
StepHypRef Expression
1 simpl 486 . . 3 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
2 nsgsubg 18390 . . 3 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
3 eqid 2758 . . . 4 (0g𝐺) = (0g𝐺)
4 eqid 2758 . . . 4 (LSSum‘𝐺) = (LSSum‘𝐺)
53, 4lsm02 18878 . . 3 (𝑁 ∈ (SubGrp‘𝐺) → ({(0g𝐺)} (LSSum‘𝐺)𝑁) = 𝑁)
61, 2, 53syl 18 . 2 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g𝐺)} (LSSum‘𝐺)𝑁) = 𝑁)
7 nsgqus0.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
87, 3qus0 18418 . . . . 5 (𝑁 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑁) = (0g𝑄))
98adantr 484 . . . 4 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g𝐺)](𝐺 ~QG 𝑁) = (0g𝑄))
10 eqid 2758 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
112adantr 484 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (SubGrp‘𝐺))
12 subgrcl 18364 . . . . . . . 8 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
132, 12syl 17 . . . . . . 7 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
1413adantr 484 . . . . . 6 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝐺 ∈ Grp)
1510, 3grpidcl 18211 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
1614, 15syl 17 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g𝐺) ∈ (Base‘𝐺))
1710, 4, 11, 16quslsm 31126 . . . 4 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g𝐺)](𝐺 ~QG 𝑁) = ({(0g𝐺)} (LSSum‘𝐺)𝑁))
189, 17eqtr3d 2795 . . 3 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g𝑄) = ({(0g𝐺)} (LSSum‘𝐺)𝑁))
19 eqid 2758 . . . . 5 (0g𝑄) = (0g𝑄)
2019subg0cl 18367 . . . 4 (𝐹 ∈ (SubGrp‘𝑄) → (0g𝑄) ∈ 𝐹)
2120adantl 485 . . 3 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g𝑄) ∈ 𝐹)
2218, 21eqeltrrd 2853 . 2 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g𝐺)} (LSSum‘𝐺)𝑁) ∈ 𝐹)
236, 22eqeltrrd 2853 1 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {csn 4525  cfv 6340  (class class class)co 7156  [cec 8303  Basecbs 16554  0gc0g 16784   /s cqus 16849  Grpcgrp 18182  SubGrpcsubg 18353  NrmSGrpcnsg 18354   ~QG cqg 18355  LSSumclsm 18839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-ec 8307  df-qs 8311  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-0g 16786  df-imas 16852  df-qus 16853  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-grp 18185  df-minusg 18186  df-subg 18356  df-nsg 18357  df-eqg 18358  df-oppg 18554  df-lsm 18841
This theorem is referenced by:  nsgmgclem  31129  nsgmgc  31130  nsgqusf1olem2  31132  nsgqusf1olem3  31133
  Copyright terms: Public domain W3C validator