![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsgqus0 | Structured version Visualization version GIF version |
Description: A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.) |
Ref | Expression |
---|---|
nsgqus0.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
Ref | Expression |
---|---|
nsgqus0 | ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺)) | |
2 | nsgsubg 19032 | . . 3 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | |
3 | eqid 2732 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | eqid 2732 | . . . 4 ⊢ (LSSum‘𝐺) = (LSSum‘𝐺) | |
5 | 3, 4 | lsm02 19534 | . . 3 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) = 𝑁) |
6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) = 𝑁) |
7 | nsgqus0.q | . . . . . 6 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | |
8 | 7, 3 | qus0 19062 | . . . . 5 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = (0g‘𝑄)) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = (0g‘𝑄)) |
10 | eqid 2732 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 2 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (SubGrp‘𝐺)) |
12 | subgrcl 19005 | . . . . . . . 8 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
13 | 2, 12 | syl 17 | . . . . . . 7 ⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
14 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝐺 ∈ Grp) |
15 | 10, 3 | grpidcl 18846 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ (Base‘𝐺)) |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
17 | 10, 4, 11, 16 | quslsm 32504 | . . . 4 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → [(0g‘𝐺)](𝐺 ~QG 𝑁) = ({(0g‘𝐺)} (LSSum‘𝐺)𝑁)) |
18 | 9, 17 | eqtr3d 2774 | . . 3 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g‘𝑄) = ({(0g‘𝐺)} (LSSum‘𝐺)𝑁)) |
19 | eqid 2732 | . . . . 5 ⊢ (0g‘𝑄) = (0g‘𝑄) | |
20 | 19 | subg0cl 19008 | . . . 4 ⊢ (𝐹 ∈ (SubGrp‘𝑄) → (0g‘𝑄) ∈ 𝐹) |
21 | 20 | adantl 482 | . . 3 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → (0g‘𝑄) ∈ 𝐹) |
22 | 18, 21 | eqeltrrd 2834 | . 2 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → ({(0g‘𝐺)} (LSSum‘𝐺)𝑁) ∈ 𝐹) |
23 | 6, 22 | eqeltrrd 2834 | 1 ⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4627 ‘cfv 6540 (class class class)co 7405 [cec 8697 Basecbs 17140 0gc0g 17381 /s cqus 17447 Grpcgrp 18815 SubGrpcsubg 18994 NrmSGrpcnsg 18995 ~QG cqg 18996 LSSumclsm 19496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-subg 18997 df-nsg 18998 df-eqg 18999 df-oppg 19204 df-lsm 19498 |
This theorem is referenced by: nsgmgclem 32510 nsgmgc 32511 nsgqusf1olem2 32513 nsgqusf1olem3 32514 |
Copyright terms: Public domain | W3C validator |