Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusadd Structured version   Visualization version   GIF version

Theorem qusadd 18333
 Description: Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusadd.v 𝑉 = (Base‘𝐺)
qusadd.p + = (+g𝐺)
qusadd.a = (+g𝐻)
Assertion
Ref Expression
qusadd ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆) [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆))

Proof of Theorem qusadd
Dummy variables 𝑎 𝑏 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 11 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 qusadd.v . . 3 𝑉 = (Base‘𝐺)
43a1i 11 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑉 = (Base‘𝐺))
5 nsgsubg 18306 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2801 . . . 4 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
73, 6eqger 18326 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er 𝑉)
85, 7syl 17 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er 𝑉)
9 subgrcl 18280 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
105, 9syl 17 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
11 qusadd.p . . 3 + = (+g𝐺)
123, 6, 11eqgcpbl 18330 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑝𝑏(𝐺 ~QG 𝑆)𝑞) → (𝑎 + 𝑏)(𝐺 ~QG 𝑆)(𝑝 + 𝑞)))
133, 11grpcl 18107 . . . 4 ((𝐺 ∈ Grp ∧ 𝑝𝑉𝑞𝑉) → (𝑝 + 𝑞) ∈ 𝑉)
14133expb 1117 . . 3 ((𝐺 ∈ Grp ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
1510, 14sylan 583 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
16 qusadd.a . 2 = (+g𝐻)
172, 4, 8, 10, 12, 15, 11, 16qusaddval 16822 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆) [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ‘cfv 6328  (class class class)co 7139   Er wer 8273  [cec 8274  Basecbs 16479  +gcplusg 16561   /s cqus 16774  Grpcgrp 18099  SubGrpcsubg 18269  NrmSGrpcnsg 18270   ~QG cqg 18271 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-ec 8278  df-qs 8282  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-0g 16711  df-imas 16777  df-qus 16778  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-subg 18272  df-nsg 18273  df-eqg 18274 This theorem is referenced by:  qus0  18334  qusinv  18335  qussub  18336  qusghm  18391  qusabl  18982
 Copyright terms: Public domain W3C validator