MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusadd Structured version   Visualization version   GIF version

Theorem qusadd 19177
Description: Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusadd.v 𝑉 = (Base‘𝐺)
qusadd.p + = (+g𝐺)
qusadd.a = (+g𝐻)
Assertion
Ref Expression
qusadd ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆) [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆))

Proof of Theorem qusadd
Dummy variables 𝑎 𝑏 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 11 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 qusadd.v . . 3 𝑉 = (Base‘𝐺)
43a1i 11 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑉 = (Base‘𝐺))
5 nsgsubg 19147 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2725 . . . 4 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
73, 6eqger 19167 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er 𝑉)
85, 7syl 17 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er 𝑉)
9 subgrcl 19120 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
105, 9syl 17 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
11 qusadd.p . . 3 + = (+g𝐺)
123, 6, 11eqgcpbl 19171 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑝𝑏(𝐺 ~QG 𝑆)𝑞) → (𝑎 + 𝑏)(𝐺 ~QG 𝑆)(𝑝 + 𝑞)))
133, 11grpcl 18931 . . . 4 ((𝐺 ∈ Grp ∧ 𝑝𝑉𝑞𝑉) → (𝑝 + 𝑞) ∈ 𝑉)
14133expb 1117 . . 3 ((𝐺 ∈ Grp ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
1510, 14sylan 578 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
16 qusadd.a . 2 = (+g𝐻)
172, 4, 8, 10, 12, 15, 11, 16qusaddval 17563 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆) [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7423   Er wer 8730  [cec 8731  Basecbs 17208  +gcplusg 17261   /s cqus 17515  Grpcgrp 18923  SubGrpcsubg 19109  NrmSGrpcnsg 19110   ~QG cqg 19111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-ec 8735  df-qs 8739  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-sup 9481  df-inf 9482  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-fz 13534  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-0g 17451  df-imas 17518  df-qus 17519  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-grp 18926  df-minusg 18927  df-subg 19112  df-nsg 19113  df-eqg 19114
This theorem is referenced by:  qus0  19178  qusinv  19179  qussub  19180  ecqusaddd  19181  qusghm  19244  ghmqusnsg  19271  ghmquskerlem3  19275  qusabl  19858  nsgmgclem  33263  nsgqusf1olem1  33265  opprqusplusg  33341
  Copyright terms: Public domain W3C validator