Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. 2
⊢ (𝜑 → (𝐺 ↾s {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) = (𝐺 ↾s {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹})) |
2 | | eqidd 2739 |
. 2
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐺)) |
3 | | eqidd 2739 |
. 2
⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐺)) |
4 | | ssrab2 4013 |
. . . 4
⊢ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ⊆ 𝐵 |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ⊆ 𝐵) |
6 | | nsgmgclem.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
7 | 5, 6 | sseqtrdi 3971 |
. 2
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ⊆ (Base‘𝐺)) |
8 | | sneq 4571 |
. . . . 5
⊢ (𝑎 = (0g‘𝐺) → {𝑎} = {(0g‘𝐺)}) |
9 | 8 | oveq1d 7290 |
. . . 4
⊢ (𝑎 = (0g‘𝐺) → ({𝑎} ⊕ 𝑁) = ({(0g‘𝐺)} ⊕ 𝑁)) |
10 | 9 | eleq1d 2823 |
. . 3
⊢ (𝑎 = (0g‘𝐺) → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({(0g‘𝐺)} ⊕ 𝑁) ∈ 𝐹)) |
11 | | nsgmgclem.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
12 | | nsgsubg 18786 |
. . . . . 6
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
14 | | subgrcl 18760 |
. . . . 5
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) |
16 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
17 | 6, 16 | grpidcl 18607 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
18 | 15, 17 | syl 17 |
. . 3
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
19 | | nsgmgclem.p |
. . . . . 6
⊢ ⊕ =
(LSSum‘𝐺) |
20 | 16, 19 | lsm02 19278 |
. . . . 5
⊢ (𝑁 ∈ (SubGrp‘𝐺) →
({(0g‘𝐺)}
⊕
𝑁) = 𝑁) |
21 | 13, 20 | syl 17 |
. . . 4
⊢ (𝜑 →
({(0g‘𝐺)}
⊕
𝑁) = 𝑁) |
22 | | nsgmgclem.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubGrp‘𝑄)) |
23 | | nsgmgclem.q |
. . . . . 6
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
24 | 23 | nsgqus0 31595 |
. . . . 5
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) |
25 | 11, 22, 24 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝐹) |
26 | 21, 25 | eqeltrd 2839 |
. . 3
⊢ (𝜑 →
({(0g‘𝐺)}
⊕
𝑁) ∈ 𝐹) |
27 | 10, 18, 26 | elrabd 3626 |
. 2
⊢ (𝜑 → (0g‘𝐺) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
28 | | sneq 4571 |
. . . . . 6
⊢ (𝑎 = (𝑥(+g‘𝐺)𝑦) → {𝑎} = {(𝑥(+g‘𝐺)𝑦)}) |
29 | 28 | oveq1d 7290 |
. . . . 5
⊢ (𝑎 = (𝑥(+g‘𝐺)𝑦) → ({𝑎} ⊕ 𝑁) = ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁)) |
30 | 29 | eleq1d 2823 |
. . . 4
⊢ (𝑎 = (𝑥(+g‘𝐺)𝑦) → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁) ∈ 𝐹)) |
31 | 15 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝐺 ∈ Grp) |
32 | | elrabi 3618 |
. . . . . 6
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → 𝑥 ∈ 𝐵) |
33 | 32 | ad2antlr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑥 ∈ 𝐵) |
34 | | elrabi 3618 |
. . . . . 6
⊢ (𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → 𝑦 ∈ 𝐵) |
35 | 34 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑦 ∈ 𝐵) |
36 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
37 | 6, 36 | grpcl 18585 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
38 | 31, 33, 35, 37 | syl3anc 1370 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
39 | 13 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑁 ∈ (SubGrp‘𝐺)) |
40 | 6, 19, 39, 38 | quslsm 31593 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁)) |
41 | 11 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
42 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑄) = (+g‘𝑄) |
43 | 23, 6, 36, 42 | qusadd 18813 |
. . . . . . 7
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
44 | 41, 33, 35, 43 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
45 | 22 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝐹 ∈ (SubGrp‘𝑄)) |
46 | 6, 19, 39, 33 | quslsm 31593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
47 | | sneq 4571 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → {𝑎} = {𝑥}) |
48 | 47 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
49 | 48 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({𝑥} ⊕ 𝑁) ∈ 𝐹)) |
50 | 49 | elrab 3624 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ↔ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹)) |
51 | 50 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → ({𝑥} ⊕ 𝑁) ∈ 𝐹) |
52 | 51 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ({𝑥} ⊕ 𝑁) ∈ 𝐹) |
53 | 46, 52 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹) |
54 | 6, 19, 39, 35 | quslsm 31593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} ⊕ 𝑁)) |
55 | | sneq 4571 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → {𝑎} = {𝑦}) |
56 | 55 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → ({𝑎} ⊕ 𝑁) = ({𝑦} ⊕ 𝑁)) |
57 | 56 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({𝑦} ⊕ 𝑁) ∈ 𝐹)) |
58 | 57 | elrab 3624 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ↔ (𝑦 ∈ 𝐵 ∧ ({𝑦} ⊕ 𝑁) ∈ 𝐹)) |
59 | 58 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → ({𝑦} ⊕ 𝑁) ∈ 𝐹) |
60 | 59 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ({𝑦} ⊕ 𝑁) ∈ 𝐹) |
61 | 54, 60 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) |
62 | 42 | subgcl 18765 |
. . . . . . 7
⊢ ((𝐹 ∈ (SubGrp‘𝑄) ∧ [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹 ∧ [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹) |
63 | 45, 53, 61, 62 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹) |
64 | 44, 63 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁) ∈ 𝐹) |
65 | 40, 64 | eqeltrrd 2840 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁) ∈ 𝐹) |
66 | 30, 38, 65 | elrabd 3626 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → (𝑥(+g‘𝐺)𝑦) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
67 | 66 | 3impa 1109 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → (𝑥(+g‘𝐺)𝑦) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
68 | | sneq 4571 |
. . . . . . 7
⊢ (𝑎 = ((invg‘𝐺)‘𝑥) → {𝑎} = {((invg‘𝐺)‘𝑥)}) |
69 | 68 | oveq1d 7290 |
. . . . . 6
⊢ (𝑎 = ((invg‘𝐺)‘𝑥) → ({𝑎} ⊕ 𝑁) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
70 | 69 | eleq1d 2823 |
. . . . 5
⊢ (𝑎 = ((invg‘𝐺)‘𝑥) → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁) ∈ 𝐹)) |
71 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
72 | 6, 71 | grpinvcl 18627 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
73 | 15, 72 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
74 | 73 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
75 | | eqid 2738 |
. . . . . . . . . 10
⊢
(invg‘𝑄) = (invg‘𝑄) |
76 | 23, 6, 71, 75 | qusinv 18815 |
. . . . . . . . 9
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg‘𝐺)‘𝑥)](𝐺 ~QG 𝑁)) |
77 | 11, 76 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg‘𝐺)‘𝑥)](𝐺 ~QG 𝑁)) |
78 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
79 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
80 | 6, 19, 78, 79 | quslsm 31593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
81 | 80 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = ((invg‘𝑄)‘({𝑥} ⊕ 𝑁))) |
82 | 6, 19, 78, 73 | quslsm 31593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [((invg‘𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
83 | 77, 81, 82 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
84 | 83 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
85 | 22 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → 𝐹 ∈ (SubGrp‘𝑄)) |
86 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ({𝑥} ⊕ 𝑁) ∈ 𝐹) |
87 | 75 | subginvcl 18764 |
. . . . . . 7
⊢ ((𝐹 ∈ (SubGrp‘𝑄) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) ∈ 𝐹) |
88 | 85, 86, 87 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) ∈ 𝐹) |
89 | 84, 88 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁) ∈ 𝐹) |
90 | 70, 74, 89 | elrabd 3626 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝐺)‘𝑥) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
91 | 90 | anasss 467 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹)) → ((invg‘𝐺)‘𝑥) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
92 | 50, 91 | sylan2b 594 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ((invg‘𝐺)‘𝑥) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
93 | 1, 2, 3, 7, 27, 67, 92, 15 | issubgrpd2 18771 |
1
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺)) |