| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. 2
⊢ (𝜑 → (𝐺 ↾s {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) = (𝐺 ↾s {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹})) |
| 2 | | eqidd 2737 |
. 2
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐺)) |
| 3 | | eqidd 2737 |
. 2
⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐺)) |
| 4 | | ssrab2 4060 |
. . . 4
⊢ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ⊆ 𝐵 |
| 5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ⊆ 𝐵) |
| 6 | | nsgmgclem.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
| 7 | 5, 6 | sseqtrdi 4004 |
. 2
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ⊆ (Base‘𝐺)) |
| 8 | | sneq 4616 |
. . . . 5
⊢ (𝑎 = (0g‘𝐺) → {𝑎} = {(0g‘𝐺)}) |
| 9 | 8 | oveq1d 7425 |
. . . 4
⊢ (𝑎 = (0g‘𝐺) → ({𝑎} ⊕ 𝑁) = ({(0g‘𝐺)} ⊕ 𝑁)) |
| 10 | 9 | eleq1d 2820 |
. . 3
⊢ (𝑎 = (0g‘𝐺) → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({(0g‘𝐺)} ⊕ 𝑁) ∈ 𝐹)) |
| 11 | | nsgmgclem.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| 12 | | nsgsubg 19146 |
. . . . . 6
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
| 14 | | subgrcl 19119 |
. . . . 5
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 16 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 17 | 6, 16 | grpidcl 18953 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 18 | 15, 17 | syl 17 |
. . 3
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
| 19 | | nsgmgclem.p |
. . . . . 6
⊢ ⊕ =
(LSSum‘𝐺) |
| 20 | 16, 19 | lsm02 19658 |
. . . . 5
⊢ (𝑁 ∈ (SubGrp‘𝐺) →
({(0g‘𝐺)}
⊕
𝑁) = 𝑁) |
| 21 | 13, 20 | syl 17 |
. . . 4
⊢ (𝜑 →
({(0g‘𝐺)}
⊕
𝑁) = 𝑁) |
| 22 | | nsgmgclem.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (SubGrp‘𝑄)) |
| 23 | | nsgmgclem.q |
. . . . . 6
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
| 24 | 23 | nsgqus0 33430 |
. . . . 5
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝐹) |
| 25 | 11, 22, 24 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝐹) |
| 26 | 21, 25 | eqeltrd 2835 |
. . 3
⊢ (𝜑 →
({(0g‘𝐺)}
⊕
𝑁) ∈ 𝐹) |
| 27 | 10, 18, 26 | elrabd 3678 |
. 2
⊢ (𝜑 → (0g‘𝐺) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
| 28 | | sneq 4616 |
. . . . . 6
⊢ (𝑎 = (𝑥(+g‘𝐺)𝑦) → {𝑎} = {(𝑥(+g‘𝐺)𝑦)}) |
| 29 | 28 | oveq1d 7425 |
. . . . 5
⊢ (𝑎 = (𝑥(+g‘𝐺)𝑦) → ({𝑎} ⊕ 𝑁) = ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁)) |
| 30 | 29 | eleq1d 2820 |
. . . 4
⊢ (𝑎 = (𝑥(+g‘𝐺)𝑦) → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁) ∈ 𝐹)) |
| 31 | 15 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝐺 ∈ Grp) |
| 32 | | elrabi 3671 |
. . . . . 6
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → 𝑥 ∈ 𝐵) |
| 33 | 32 | ad2antlr 727 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑥 ∈ 𝐵) |
| 34 | | elrabi 3671 |
. . . . . 6
⊢ (𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → 𝑦 ∈ 𝐵) |
| 35 | 34 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑦 ∈ 𝐵) |
| 36 | | eqid 2736 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 37 | 6, 36 | grpcl 18929 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 38 | 31, 33, 35, 37 | syl3anc 1373 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 39 | 13 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 40 | 6, 19, 39, 38 | quslsm 33425 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁)) |
| 41 | 11 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
| 42 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘𝑄) = (+g‘𝑄) |
| 43 | 23, 6, 36, 42 | qusadd 19176 |
. . . . . . 7
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
| 44 | 41, 33, 35, 43 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁)) |
| 45 | 22 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → 𝐹 ∈ (SubGrp‘𝑄)) |
| 46 | 6, 19, 39, 33 | quslsm 33425 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
| 47 | | sneq 4616 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → {𝑎} = {𝑥}) |
| 48 | 47 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
| 49 | 48 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({𝑥} ⊕ 𝑁) ∈ 𝐹)) |
| 50 | 49 | elrab 3676 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ↔ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹)) |
| 51 | 50 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → ({𝑥} ⊕ 𝑁) ∈ 𝐹) |
| 52 | 51 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ({𝑥} ⊕ 𝑁) ∈ 𝐹) |
| 53 | 46, 52 | eqeltrd 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹) |
| 54 | 6, 19, 39, 35 | quslsm 33425 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} ⊕ 𝑁)) |
| 55 | | sneq 4616 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → {𝑎} = {𝑦}) |
| 56 | 55 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → ({𝑎} ⊕ 𝑁) = ({𝑦} ⊕ 𝑁)) |
| 57 | 56 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({𝑦} ⊕ 𝑁) ∈ 𝐹)) |
| 58 | 57 | elrab 3676 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ↔ (𝑦 ∈ 𝐵 ∧ ({𝑦} ⊕ 𝑁) ∈ 𝐹)) |
| 59 | 58 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} → ({𝑦} ⊕ 𝑁) ∈ 𝐹) |
| 60 | 59 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ({𝑦} ⊕ 𝑁) ∈ 𝐹) |
| 61 | 54, 60 | eqeltrd 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) |
| 62 | 42 | subgcl 19124 |
. . . . . . 7
⊢ ((𝐹 ∈ (SubGrp‘𝑄) ∧ [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹 ∧ [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹) |
| 63 | 45, 53, 61, 62 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g‘𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹) |
| 64 | 44, 63 | eqeltrrd 2836 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝑁) ∈ 𝐹) |
| 65 | 40, 64 | eqeltrrd 2836 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ({(𝑥(+g‘𝐺)𝑦)} ⊕ 𝑁) ∈ 𝐹) |
| 66 | 30, 38, 65 | elrabd 3678 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → (𝑥(+g‘𝐺)𝑦) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
| 67 | 66 | 3impa 1109 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ∧ 𝑦 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → (𝑥(+g‘𝐺)𝑦) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
| 68 | | sneq 4616 |
. . . . . . 7
⊢ (𝑎 = ((invg‘𝐺)‘𝑥) → {𝑎} = {((invg‘𝐺)‘𝑥)}) |
| 69 | 68 | oveq1d 7425 |
. . . . . 6
⊢ (𝑎 = ((invg‘𝐺)‘𝑥) → ({𝑎} ⊕ 𝑁) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
| 70 | 69 | eleq1d 2820 |
. . . . 5
⊢ (𝑎 = ((invg‘𝐺)‘𝑥) → (({𝑎} ⊕ 𝑁) ∈ 𝐹 ↔ ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁) ∈ 𝐹)) |
| 71 | | eqid 2736 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 72 | 6, 71 | grpinvcl 18975 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 73 | 15, 72 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 74 | 73 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 75 | | eqid 2736 |
. . . . . . . . . 10
⊢
(invg‘𝑄) = (invg‘𝑄) |
| 76 | 23, 6, 71, 75 | qusinv 19178 |
. . . . . . . . 9
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg‘𝐺)‘𝑥)](𝐺 ~QG 𝑁)) |
| 77 | 11, 76 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg‘𝐺)‘𝑥)](𝐺 ~QG 𝑁)) |
| 78 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 79 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 80 | 6, 19, 78, 79 | quslsm 33425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
| 81 | 80 | fveq2d 6885 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = ((invg‘𝑄)‘({𝑥} ⊕ 𝑁))) |
| 82 | 6, 19, 78, 73 | quslsm 33425 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [((invg‘𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
| 83 | 77, 81, 82 | 3eqtr3d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
| 84 | 83 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) = ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁)) |
| 85 | 22 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → 𝐹 ∈ (SubGrp‘𝑄)) |
| 86 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ({𝑥} ⊕ 𝑁) ∈ 𝐹) |
| 87 | 75 | subginvcl 19123 |
. . . . . . 7
⊢ ((𝐹 ∈ (SubGrp‘𝑄) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) ∈ 𝐹) |
| 88 | 85, 86, 87 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝑄)‘({𝑥} ⊕ 𝑁)) ∈ 𝐹) |
| 89 | 84, 88 | eqeltrrd 2836 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ({((invg‘𝐺)‘𝑥)} ⊕ 𝑁) ∈ 𝐹) |
| 90 | 70, 74, 89 | elrabd 3678 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹) → ((invg‘𝐺)‘𝑥) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
| 91 | 90 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝐹)) → ((invg‘𝐺)‘𝑥) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
| 92 | 50, 91 | sylan2b 594 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) → ((invg‘𝐺)‘𝑥) ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹}) |
| 93 | 1, 2, 3, 7, 27, 67, 92, 15 | issubgrpd2 19130 |
1
⊢ (𝜑 → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺)) |