Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgclem Structured version   Visualization version   GIF version

Theorem nsgmgclem 33389
Description: Lemma for nsgmgc 33390. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgclem.b 𝐵 = (Base‘𝐺)
nsgmgclem.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgclem.p = (LSSum‘𝐺)
nsgmgclem.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
nsgmgclem.f (𝜑𝐹 ∈ (SubGrp‘𝑄))
Assertion
Ref Expression
nsgmgclem (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Distinct variable groups:   ,𝑎   𝐵,𝑎   𝐹,𝑎   𝐺,𝑎   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑄(𝑎)

Proof of Theorem nsgmgclem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . 2 (𝜑 → (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) = (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}))
2 eqidd 2731 . 2 (𝜑 → (0g𝐺) = (0g𝐺))
3 eqidd 2731 . 2 (𝜑 → (+g𝐺) = (+g𝐺))
4 ssrab2 4046 . . . 4 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵
54a1i 11 . . 3 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵)
6 nsgmgclem.b . . 3 𝐵 = (Base‘𝐺)
75, 6sseqtrdi 3990 . 2 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ (Base‘𝐺))
8 sneq 4602 . . . . 5 (𝑎 = (0g𝐺) → {𝑎} = {(0g𝐺)})
98oveq1d 7405 . . . 4 (𝑎 = (0g𝐺) → ({𝑎} 𝑁) = ({(0g𝐺)} 𝑁))
109eleq1d 2814 . . 3 (𝑎 = (0g𝐺) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(0g𝐺)} 𝑁) ∈ 𝐹))
11 nsgmgclem.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
12 nsgsubg 19097 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1311, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
14 subgrcl 19070 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1513, 14syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
16 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
176, 16grpidcl 18904 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . 3 (𝜑 → (0g𝐺) ∈ 𝐵)
19 nsgmgclem.p . . . . . 6 = (LSSum‘𝐺)
2016, 19lsm02 19609 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → ({(0g𝐺)} 𝑁) = 𝑁)
2113, 20syl 17 . . . 4 (𝜑 → ({(0g𝐺)} 𝑁) = 𝑁)
22 nsgmgclem.f . . . . 5 (𝜑𝐹 ∈ (SubGrp‘𝑄))
23 nsgmgclem.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
2423nsgqus0 33388 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
2511, 22, 24syl2anc 584 . . . 4 (𝜑𝑁𝐹)
2621, 25eqeltrd 2829 . . 3 (𝜑 → ({(0g𝐺)} 𝑁) ∈ 𝐹)
2710, 18, 26elrabd 3664 . 2 (𝜑 → (0g𝐺) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
28 sneq 4602 . . . . . 6 (𝑎 = (𝑥(+g𝐺)𝑦) → {𝑎} = {(𝑥(+g𝐺)𝑦)})
2928oveq1d 7405 . . . . 5 (𝑎 = (𝑥(+g𝐺)𝑦) → ({𝑎} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
3029eleq1d 2814 . . . 4 (𝑎 = (𝑥(+g𝐺)𝑦) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹))
3115ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐺 ∈ Grp)
32 elrabi 3657 . . . . . 6 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑥𝐵)
3332ad2antlr 727 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑥𝐵)
34 elrabi 3657 . . . . . 6 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑦𝐵)
3534adantl 481 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑦𝐵)
36 eqid 2730 . . . . . 6 (+g𝐺) = (+g𝐺)
376, 36grpcl 18880 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3831, 33, 35, 37syl3anc 1373 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3913ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (SubGrp‘𝐺))
406, 19, 39, 38quslsm 33383 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
4111ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (NrmSGrp‘𝐺))
42 eqid 2730 . . . . . . . 8 (+g𝑄) = (+g𝑄)
4323, 6, 36, 42qusadd 19127 . . . . . . 7 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4441, 33, 35, 43syl3anc 1373 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4522ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐹 ∈ (SubGrp‘𝑄))
466, 19, 39, 33quslsm 33383 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
47 sneq 4602 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → {𝑎} = {𝑥})
4847oveq1d 7405 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
4948eleq1d 2814 . . . . . . . . . . 11 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑥} 𝑁) ∈ 𝐹))
5049elrab 3662 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹))
5150simprbi 496 . . . . . . . . 9 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑥} 𝑁) ∈ 𝐹)
5251ad2antlr 727 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑥} 𝑁) ∈ 𝐹)
5346, 52eqeltrd 2829 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹)
546, 19, 39, 35quslsm 33383 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
55 sneq 4602 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → {𝑎} = {𝑦})
5655oveq1d 7405 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ({𝑎} 𝑁) = ({𝑦} 𝑁))
5756eleq1d 2814 . . . . . . . . . . 11 (𝑎 = 𝑦 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑦} 𝑁) ∈ 𝐹))
5857elrab 3662 . . . . . . . . . 10 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑦𝐵 ∧ ({𝑦} 𝑁) ∈ 𝐹))
5958simprbi 496 . . . . . . . . 9 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑦} 𝑁) ∈ 𝐹)
6059adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑦} 𝑁) ∈ 𝐹)
6154, 60eqeltrd 2829 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹)
6242subgcl 19075 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹 ∧ [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6345, 53, 61, 62syl3anc 1373 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6444, 63eqeltrrd 2830 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) ∈ 𝐹)
6540, 64eqeltrrd 2830 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹)
6630, 38, 65elrabd 3664 . . 3 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
67663impa 1109 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
68 sneq 4602 . . . . . . 7 (𝑎 = ((invg𝐺)‘𝑥) → {𝑎} = {((invg𝐺)‘𝑥)})
6968oveq1d 7405 . . . . . 6 (𝑎 = ((invg𝐺)‘𝑥) → ({𝑎} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
7069eleq1d 2814 . . . . 5 (𝑎 = ((invg𝐺)‘𝑥) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹))
71 eqid 2730 . . . . . . . 8 (invg𝐺) = (invg𝐺)
726, 71grpinvcl 18926 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7315, 72sylan 580 . . . . . 6 ((𝜑𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7473adantr 480 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ 𝐵)
75 eqid 2730 . . . . . . . . . 10 (invg𝑄) = (invg𝑄)
7623, 6, 71, 75qusinv 19129 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7711, 76sylan 580 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7813adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
79 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
806, 19, 78, 79quslsm 33383 . . . . . . . . 9 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
8180fveq2d 6865 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = ((invg𝑄)‘({𝑥} 𝑁)))
826, 19, 78, 73quslsm 33383 . . . . . . . 8 ((𝜑𝑥𝐵) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
8377, 81, 823eqtr3d 2773 . . . . . . 7 ((𝜑𝑥𝐵) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8483adantr 480 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8522ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → 𝐹 ∈ (SubGrp‘𝑄))
86 simpr 484 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({𝑥} 𝑁) ∈ 𝐹)
8775subginvcl 19074 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8885, 86, 87syl2anc 584 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8984, 88eqeltrrd 2830 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹)
9070, 74, 89elrabd 3664 . . . 4 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9190anasss 466 . . 3 ((𝜑 ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹)) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9250, 91sylan2b 594 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
931, 2, 3, 7, 27, 67, 92, 15issubgrpd2 19081 1 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917  {csn 4592  cfv 6514  (class class class)co 7390  [cec 8672  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409   /s cqus 17475  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061  LSSumclsm 19571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062  df-nsg 19063  df-eqg 19064  df-oppg 19285  df-lsm 19573
This theorem is referenced by:  nsgmgc  33390  nsgqusf1olem2  33392  nsgqusf1olem3  33393
  Copyright terms: Public domain W3C validator