Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgclem Structured version   Visualization version   GIF version

Theorem nsgmgclem 32510
Description: Lemma for nsgmgc 32511. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgclem.b 𝐵 = (Base‘𝐺)
nsgmgclem.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgclem.p = (LSSum‘𝐺)
nsgmgclem.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
nsgmgclem.f (𝜑𝐹 ∈ (SubGrp‘𝑄))
Assertion
Ref Expression
nsgmgclem (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Distinct variable groups:   ,𝑎   𝐵,𝑎   𝐹,𝑎   𝐺,𝑎   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑄(𝑎)

Proof of Theorem nsgmgclem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2733 . 2 (𝜑 → (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) = (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}))
2 eqidd 2733 . 2 (𝜑 → (0g𝐺) = (0g𝐺))
3 eqidd 2733 . 2 (𝜑 → (+g𝐺) = (+g𝐺))
4 ssrab2 4076 . . . 4 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵
54a1i 11 . . 3 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵)
6 nsgmgclem.b . . 3 𝐵 = (Base‘𝐺)
75, 6sseqtrdi 4031 . 2 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ (Base‘𝐺))
8 sneq 4637 . . . . 5 (𝑎 = (0g𝐺) → {𝑎} = {(0g𝐺)})
98oveq1d 7420 . . . 4 (𝑎 = (0g𝐺) → ({𝑎} 𝑁) = ({(0g𝐺)} 𝑁))
109eleq1d 2818 . . 3 (𝑎 = (0g𝐺) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(0g𝐺)} 𝑁) ∈ 𝐹))
11 nsgmgclem.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
12 nsgsubg 19032 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1311, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
14 subgrcl 19005 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1513, 14syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
16 eqid 2732 . . . . 5 (0g𝐺) = (0g𝐺)
176, 16grpidcl 18846 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . 3 (𝜑 → (0g𝐺) ∈ 𝐵)
19 nsgmgclem.p . . . . . 6 = (LSSum‘𝐺)
2016, 19lsm02 19534 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → ({(0g𝐺)} 𝑁) = 𝑁)
2113, 20syl 17 . . . 4 (𝜑 → ({(0g𝐺)} 𝑁) = 𝑁)
22 nsgmgclem.f . . . . 5 (𝜑𝐹 ∈ (SubGrp‘𝑄))
23 nsgmgclem.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
2423nsgqus0 32509 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
2511, 22, 24syl2anc 584 . . . 4 (𝜑𝑁𝐹)
2621, 25eqeltrd 2833 . . 3 (𝜑 → ({(0g𝐺)} 𝑁) ∈ 𝐹)
2710, 18, 26elrabd 3684 . 2 (𝜑 → (0g𝐺) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
28 sneq 4637 . . . . . 6 (𝑎 = (𝑥(+g𝐺)𝑦) → {𝑎} = {(𝑥(+g𝐺)𝑦)})
2928oveq1d 7420 . . . . 5 (𝑎 = (𝑥(+g𝐺)𝑦) → ({𝑎} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
3029eleq1d 2818 . . . 4 (𝑎 = (𝑥(+g𝐺)𝑦) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹))
3115ad2antrr 724 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐺 ∈ Grp)
32 elrabi 3676 . . . . . 6 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑥𝐵)
3332ad2antlr 725 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑥𝐵)
34 elrabi 3676 . . . . . 6 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑦𝐵)
3534adantl 482 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑦𝐵)
36 eqid 2732 . . . . . 6 (+g𝐺) = (+g𝐺)
376, 36grpcl 18823 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3831, 33, 35, 37syl3anc 1371 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3913ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (SubGrp‘𝐺))
406, 19, 39, 38quslsm 32504 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
4111ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (NrmSGrp‘𝐺))
42 eqid 2732 . . . . . . . 8 (+g𝑄) = (+g𝑄)
4323, 6, 36, 42qusadd 19061 . . . . . . 7 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4441, 33, 35, 43syl3anc 1371 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4522ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐹 ∈ (SubGrp‘𝑄))
466, 19, 39, 33quslsm 32504 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
47 sneq 4637 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → {𝑎} = {𝑥})
4847oveq1d 7420 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
4948eleq1d 2818 . . . . . . . . . . 11 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑥} 𝑁) ∈ 𝐹))
5049elrab 3682 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹))
5150simprbi 497 . . . . . . . . 9 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑥} 𝑁) ∈ 𝐹)
5251ad2antlr 725 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑥} 𝑁) ∈ 𝐹)
5346, 52eqeltrd 2833 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹)
546, 19, 39, 35quslsm 32504 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
55 sneq 4637 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → {𝑎} = {𝑦})
5655oveq1d 7420 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ({𝑎} 𝑁) = ({𝑦} 𝑁))
5756eleq1d 2818 . . . . . . . . . . 11 (𝑎 = 𝑦 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑦} 𝑁) ∈ 𝐹))
5857elrab 3682 . . . . . . . . . 10 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑦𝐵 ∧ ({𝑦} 𝑁) ∈ 𝐹))
5958simprbi 497 . . . . . . . . 9 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑦} 𝑁) ∈ 𝐹)
6059adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑦} 𝑁) ∈ 𝐹)
6154, 60eqeltrd 2833 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹)
6242subgcl 19010 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹 ∧ [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6345, 53, 61, 62syl3anc 1371 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6444, 63eqeltrrd 2834 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) ∈ 𝐹)
6540, 64eqeltrrd 2834 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹)
6630, 38, 65elrabd 3684 . . 3 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
67663impa 1110 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
68 sneq 4637 . . . . . . 7 (𝑎 = ((invg𝐺)‘𝑥) → {𝑎} = {((invg𝐺)‘𝑥)})
6968oveq1d 7420 . . . . . 6 (𝑎 = ((invg𝐺)‘𝑥) → ({𝑎} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
7069eleq1d 2818 . . . . 5 (𝑎 = ((invg𝐺)‘𝑥) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹))
71 eqid 2732 . . . . . . . 8 (invg𝐺) = (invg𝐺)
726, 71grpinvcl 18868 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7315, 72sylan 580 . . . . . 6 ((𝜑𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7473adantr 481 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ 𝐵)
75 eqid 2732 . . . . . . . . . 10 (invg𝑄) = (invg𝑄)
7623, 6, 71, 75qusinv 19063 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7711, 76sylan 580 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7813adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
79 simpr 485 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
806, 19, 78, 79quslsm 32504 . . . . . . . . 9 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
8180fveq2d 6892 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = ((invg𝑄)‘({𝑥} 𝑁)))
826, 19, 78, 73quslsm 32504 . . . . . . . 8 ((𝜑𝑥𝐵) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
8377, 81, 823eqtr3d 2780 . . . . . . 7 ((𝜑𝑥𝐵) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8483adantr 481 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8522ad2antrr 724 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → 𝐹 ∈ (SubGrp‘𝑄))
86 simpr 485 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({𝑥} 𝑁) ∈ 𝐹)
8775subginvcl 19009 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8885, 86, 87syl2anc 584 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8984, 88eqeltrrd 2834 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹)
9070, 74, 89elrabd 3684 . . . 4 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9190anasss 467 . . 3 ((𝜑 ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹)) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9250, 91sylan2b 594 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
931, 2, 3, 7, 27, 67, 92, 15issubgrpd2 19016 1 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  wss 3947  {csn 4627  cfv 6540  (class class class)co 7405  [cec 8697  Basecbs 17140  s cress 17169  +gcplusg 17193  0gc0g 17381   /s cqus 17447  Grpcgrp 18815  invgcminusg 18816  SubGrpcsubg 18994  NrmSGrpcnsg 18995   ~QG cqg 18996  LSSumclsm 19496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-ec 8701  df-qs 8705  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-subg 18997  df-nsg 18998  df-eqg 18999  df-oppg 19204  df-lsm 19498
This theorem is referenced by:  nsgmgc  32511  nsgqusf1olem2  32513  nsgqusf1olem3  32514
  Copyright terms: Public domain W3C validator