Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgclem Structured version   Visualization version   GIF version

Theorem nsgmgclem 32237
Description: Lemma for nsgmgc 32238. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgclem.b 𝐵 = (Base‘𝐺)
nsgmgclem.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgclem.p = (LSSum‘𝐺)
nsgmgclem.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
nsgmgclem.f (𝜑𝐹 ∈ (SubGrp‘𝑄))
Assertion
Ref Expression
nsgmgclem (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Distinct variable groups:   ,𝑎   𝐵,𝑎   𝐹,𝑎   𝐺,𝑎   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑄(𝑎)

Proof of Theorem nsgmgclem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑 → (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) = (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}))
2 eqidd 2734 . 2 (𝜑 → (0g𝐺) = (0g𝐺))
3 eqidd 2734 . 2 (𝜑 → (+g𝐺) = (+g𝐺))
4 ssrab2 4038 . . . 4 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵
54a1i 11 . . 3 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵)
6 nsgmgclem.b . . 3 𝐵 = (Base‘𝐺)
75, 6sseqtrdi 3995 . 2 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ (Base‘𝐺))
8 sneq 4597 . . . . 5 (𝑎 = (0g𝐺) → {𝑎} = {(0g𝐺)})
98oveq1d 7373 . . . 4 (𝑎 = (0g𝐺) → ({𝑎} 𝑁) = ({(0g𝐺)} 𝑁))
109eleq1d 2819 . . 3 (𝑎 = (0g𝐺) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(0g𝐺)} 𝑁) ∈ 𝐹))
11 nsgmgclem.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
12 nsgsubg 18965 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1311, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
14 subgrcl 18938 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1513, 14syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
16 eqid 2733 . . . . 5 (0g𝐺) = (0g𝐺)
176, 16grpidcl 18783 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . 3 (𝜑 → (0g𝐺) ∈ 𝐵)
19 nsgmgclem.p . . . . . 6 = (LSSum‘𝐺)
2016, 19lsm02 19459 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → ({(0g𝐺)} 𝑁) = 𝑁)
2113, 20syl 17 . . . 4 (𝜑 → ({(0g𝐺)} 𝑁) = 𝑁)
22 nsgmgclem.f . . . . 5 (𝜑𝐹 ∈ (SubGrp‘𝑄))
23 nsgmgclem.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
2423nsgqus0 32236 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
2511, 22, 24syl2anc 585 . . . 4 (𝜑𝑁𝐹)
2621, 25eqeltrd 2834 . . 3 (𝜑 → ({(0g𝐺)} 𝑁) ∈ 𝐹)
2710, 18, 26elrabd 3648 . 2 (𝜑 → (0g𝐺) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
28 sneq 4597 . . . . . 6 (𝑎 = (𝑥(+g𝐺)𝑦) → {𝑎} = {(𝑥(+g𝐺)𝑦)})
2928oveq1d 7373 . . . . 5 (𝑎 = (𝑥(+g𝐺)𝑦) → ({𝑎} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
3029eleq1d 2819 . . . 4 (𝑎 = (𝑥(+g𝐺)𝑦) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹))
3115ad2antrr 725 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐺 ∈ Grp)
32 elrabi 3640 . . . . . 6 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑥𝐵)
3332ad2antlr 726 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑥𝐵)
34 elrabi 3640 . . . . . 6 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑦𝐵)
3534adantl 483 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑦𝐵)
36 eqid 2733 . . . . . 6 (+g𝐺) = (+g𝐺)
376, 36grpcl 18761 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3831, 33, 35, 37syl3anc 1372 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3913ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (SubGrp‘𝐺))
406, 19, 39, 38quslsm 32234 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
4111ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (NrmSGrp‘𝐺))
42 eqid 2733 . . . . . . . 8 (+g𝑄) = (+g𝑄)
4323, 6, 36, 42qusadd 18992 . . . . . . 7 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4441, 33, 35, 43syl3anc 1372 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4522ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐹 ∈ (SubGrp‘𝑄))
466, 19, 39, 33quslsm 32234 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
47 sneq 4597 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → {𝑎} = {𝑥})
4847oveq1d 7373 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
4948eleq1d 2819 . . . . . . . . . . 11 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑥} 𝑁) ∈ 𝐹))
5049elrab 3646 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹))
5150simprbi 498 . . . . . . . . 9 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑥} 𝑁) ∈ 𝐹)
5251ad2antlr 726 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑥} 𝑁) ∈ 𝐹)
5346, 52eqeltrd 2834 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹)
546, 19, 39, 35quslsm 32234 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
55 sneq 4597 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → {𝑎} = {𝑦})
5655oveq1d 7373 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ({𝑎} 𝑁) = ({𝑦} 𝑁))
5756eleq1d 2819 . . . . . . . . . . 11 (𝑎 = 𝑦 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑦} 𝑁) ∈ 𝐹))
5857elrab 3646 . . . . . . . . . 10 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑦𝐵 ∧ ({𝑦} 𝑁) ∈ 𝐹))
5958simprbi 498 . . . . . . . . 9 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑦} 𝑁) ∈ 𝐹)
6059adantl 483 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑦} 𝑁) ∈ 𝐹)
6154, 60eqeltrd 2834 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹)
6242subgcl 18943 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹 ∧ [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6345, 53, 61, 62syl3anc 1372 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6444, 63eqeltrrd 2835 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) ∈ 𝐹)
6540, 64eqeltrrd 2835 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹)
6630, 38, 65elrabd 3648 . . 3 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
67663impa 1111 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
68 sneq 4597 . . . . . . 7 (𝑎 = ((invg𝐺)‘𝑥) → {𝑎} = {((invg𝐺)‘𝑥)})
6968oveq1d 7373 . . . . . 6 (𝑎 = ((invg𝐺)‘𝑥) → ({𝑎} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
7069eleq1d 2819 . . . . 5 (𝑎 = ((invg𝐺)‘𝑥) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹))
71 eqid 2733 . . . . . . . 8 (invg𝐺) = (invg𝐺)
726, 71grpinvcl 18803 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7315, 72sylan 581 . . . . . 6 ((𝜑𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7473adantr 482 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ 𝐵)
75 eqid 2733 . . . . . . . . . 10 (invg𝑄) = (invg𝑄)
7623, 6, 71, 75qusinv 18994 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7711, 76sylan 581 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7813adantr 482 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
79 simpr 486 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
806, 19, 78, 79quslsm 32234 . . . . . . . . 9 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
8180fveq2d 6847 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = ((invg𝑄)‘({𝑥} 𝑁)))
826, 19, 78, 73quslsm 32234 . . . . . . . 8 ((𝜑𝑥𝐵) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
8377, 81, 823eqtr3d 2781 . . . . . . 7 ((𝜑𝑥𝐵) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8483adantr 482 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8522ad2antrr 725 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → 𝐹 ∈ (SubGrp‘𝑄))
86 simpr 486 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({𝑥} 𝑁) ∈ 𝐹)
8775subginvcl 18942 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8885, 86, 87syl2anc 585 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8984, 88eqeltrrd 2835 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹)
9070, 74, 89elrabd 3648 . . . 4 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9190anasss 468 . . 3 ((𝜑 ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹)) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9250, 91sylan2b 595 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
931, 2, 3, 7, 27, 67, 92, 15issubgrpd2 18949 1 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3406  wss 3911  {csn 4587  cfv 6497  (class class class)co 7358  [cec 8649  Basecbs 17088  s cress 17117  +gcplusg 17138  0gc0g 17326   /s cqus 17392  Grpcgrp 18753  invgcminusg 18754  SubGrpcsubg 18927  NrmSGrpcnsg 18928   ~QG cqg 18929  LSSumclsm 19421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-tpos 8158  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-ec 8653  df-qs 8657  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-0g 17328  df-imas 17395  df-qus 17396  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-grp 18756  df-minusg 18757  df-subg 18930  df-nsg 18931  df-eqg 18932  df-oppg 19129  df-lsm 19423
This theorem is referenced by:  nsgmgc  32238  nsgqusf1olem2  32240  nsgqusf1olem3  32241
  Copyright terms: Public domain W3C validator