Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgclem Structured version   Visualization version   GIF version

Theorem nsgmgclem 31596
Description: Lemma for nsgmgc 31597. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgclem.b 𝐵 = (Base‘𝐺)
nsgmgclem.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgclem.p = (LSSum‘𝐺)
nsgmgclem.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
nsgmgclem.f (𝜑𝐹 ∈ (SubGrp‘𝑄))
Assertion
Ref Expression
nsgmgclem (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Distinct variable groups:   ,𝑎   𝐵,𝑎   𝐹,𝑎   𝐺,𝑎   𝑁,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑄(𝑎)

Proof of Theorem nsgmgclem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . 2 (𝜑 → (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) = (𝐺s {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}))
2 eqidd 2739 . 2 (𝜑 → (0g𝐺) = (0g𝐺))
3 eqidd 2739 . 2 (𝜑 → (+g𝐺) = (+g𝐺))
4 ssrab2 4013 . . . 4 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵
54a1i 11 . . 3 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ 𝐵)
6 nsgmgclem.b . . 3 𝐵 = (Base‘𝐺)
75, 6sseqtrdi 3971 . 2 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ⊆ (Base‘𝐺))
8 sneq 4571 . . . . 5 (𝑎 = (0g𝐺) → {𝑎} = {(0g𝐺)})
98oveq1d 7290 . . . 4 (𝑎 = (0g𝐺) → ({𝑎} 𝑁) = ({(0g𝐺)} 𝑁))
109eleq1d 2823 . . 3 (𝑎 = (0g𝐺) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(0g𝐺)} 𝑁) ∈ 𝐹))
11 nsgmgclem.n . . . . . 6 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
12 nsgsubg 18786 . . . . . 6 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
1311, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
14 subgrcl 18760 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1513, 14syl 17 . . . 4 (𝜑𝐺 ∈ Grp)
16 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
176, 16grpidcl 18607 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
1815, 17syl 17 . . 3 (𝜑 → (0g𝐺) ∈ 𝐵)
19 nsgmgclem.p . . . . . 6 = (LSSum‘𝐺)
2016, 19lsm02 19278 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → ({(0g𝐺)} 𝑁) = 𝑁)
2113, 20syl 17 . . . 4 (𝜑 → ({(0g𝐺)} 𝑁) = 𝑁)
22 nsgmgclem.f . . . . 5 (𝜑𝐹 ∈ (SubGrp‘𝑄))
23 nsgmgclem.q . . . . . 6 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
2423nsgqus0 31595 . . . . 5 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
2511, 22, 24syl2anc 584 . . . 4 (𝜑𝑁𝐹)
2621, 25eqeltrd 2839 . . 3 (𝜑 → ({(0g𝐺)} 𝑁) ∈ 𝐹)
2710, 18, 26elrabd 3626 . 2 (𝜑 → (0g𝐺) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
28 sneq 4571 . . . . . 6 (𝑎 = (𝑥(+g𝐺)𝑦) → {𝑎} = {(𝑥(+g𝐺)𝑦)})
2928oveq1d 7290 . . . . 5 (𝑎 = (𝑥(+g𝐺)𝑦) → ({𝑎} 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
3029eleq1d 2823 . . . 4 (𝑎 = (𝑥(+g𝐺)𝑦) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹))
3115ad2antrr 723 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐺 ∈ Grp)
32 elrabi 3618 . . . . . 6 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑥𝐵)
3332ad2antlr 724 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑥𝐵)
34 elrabi 3618 . . . . . 6 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → 𝑦𝐵)
3534adantl 482 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑦𝐵)
36 eqid 2738 . . . . . 6 (+g𝐺) = (+g𝐺)
376, 36grpcl 18585 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3831, 33, 35, 37syl3anc 1370 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
3913ad2antrr 723 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (SubGrp‘𝐺))
406, 19, 39, 38quslsm 31593 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) = ({(𝑥(+g𝐺)𝑦)} 𝑁))
4111ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝑁 ∈ (NrmSGrp‘𝐺))
42 eqid 2738 . . . . . . . 8 (+g𝑄) = (+g𝑄)
4323, 6, 36, 42qusadd 18813 . . . . . . 7 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵𝑦𝐵) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4441, 33, 35, 43syl3anc 1370 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁))
4522ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → 𝐹 ∈ (SubGrp‘𝑄))
466, 19, 39, 33quslsm 31593 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
47 sneq 4571 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → {𝑎} = {𝑥})
4847oveq1d 7290 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
4948eleq1d 2823 . . . . . . . . . . 11 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑥} 𝑁) ∈ 𝐹))
5049elrab 3624 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹))
5150simprbi 497 . . . . . . . . 9 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑥} 𝑁) ∈ 𝐹)
5251ad2antlr 724 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑥} 𝑁) ∈ 𝐹)
5346, 52eqeltrd 2839 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹)
546, 19, 39, 35quslsm 31593 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) = ({𝑦} 𝑁))
55 sneq 4571 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → {𝑎} = {𝑦})
5655oveq1d 7290 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ({𝑎} 𝑁) = ({𝑦} 𝑁))
5756eleq1d 2823 . . . . . . . . . . 11 (𝑎 = 𝑦 → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({𝑦} 𝑁) ∈ 𝐹))
5857elrab 3624 . . . . . . . . . 10 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ↔ (𝑦𝐵 ∧ ({𝑦} 𝑁) ∈ 𝐹))
5958simprbi 497 . . . . . . . . 9 (𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} → ({𝑦} 𝑁) ∈ 𝐹)
6059adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({𝑦} 𝑁) ∈ 𝐹)
6154, 60eqeltrd 2839 . . . . . . 7 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹)
6242subgcl 18765 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ [𝑥](𝐺 ~QG 𝑁) ∈ 𝐹 ∧ [𝑦](𝐺 ~QG 𝑁) ∈ 𝐹) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6345, 53, 61, 62syl3anc 1370 . . . . . 6 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ([𝑥](𝐺 ~QG 𝑁)(+g𝑄)[𝑦](𝐺 ~QG 𝑁)) ∈ 𝐹)
6444, 63eqeltrrd 2840 . . . . 5 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝑁) ∈ 𝐹)
6540, 64eqeltrrd 2840 . . . 4 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ({(𝑥(+g𝐺)𝑦)} 𝑁) ∈ 𝐹)
6630, 38, 65elrabd 3626 . . 3 (((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
67663impa 1109 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∧ 𝑦 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → (𝑥(+g𝐺)𝑦) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
68 sneq 4571 . . . . . . 7 (𝑎 = ((invg𝐺)‘𝑥) → {𝑎} = {((invg𝐺)‘𝑥)})
6968oveq1d 7290 . . . . . 6 (𝑎 = ((invg𝐺)‘𝑥) → ({𝑎} 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
7069eleq1d 2823 . . . . 5 (𝑎 = ((invg𝐺)‘𝑥) → (({𝑎} 𝑁) ∈ 𝐹 ↔ ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹))
71 eqid 2738 . . . . . . . 8 (invg𝐺) = (invg𝐺)
726, 71grpinvcl 18627 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7315, 72sylan 580 . . . . . 6 ((𝜑𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
7473adantr 481 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ 𝐵)
75 eqid 2738 . . . . . . . . . 10 (invg𝑄) = (invg𝑄)
7623, 6, 71, 75qusinv 18815 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7711, 76sylan 580 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁))
7813adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑁 ∈ (SubGrp‘𝐺))
79 simpr 485 . . . . . . . . . 10 ((𝜑𝑥𝐵) → 𝑥𝐵)
806, 19, 78, 79quslsm 31593 . . . . . . . . 9 ((𝜑𝑥𝐵) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
8180fveq2d 6778 . . . . . . . 8 ((𝜑𝑥𝐵) → ((invg𝑄)‘[𝑥](𝐺 ~QG 𝑁)) = ((invg𝑄)‘({𝑥} 𝑁)))
826, 19, 78, 73quslsm 31593 . . . . . . . 8 ((𝜑𝑥𝐵) → [((invg𝐺)‘𝑥)](𝐺 ~QG 𝑁) = ({((invg𝐺)‘𝑥)} 𝑁))
8377, 81, 823eqtr3d 2786 . . . . . . 7 ((𝜑𝑥𝐵) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8483adantr 481 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) = ({((invg𝐺)‘𝑥)} 𝑁))
8522ad2antrr 723 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → 𝐹 ∈ (SubGrp‘𝑄))
86 simpr 485 . . . . . . 7 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({𝑥} 𝑁) ∈ 𝐹)
8775subginvcl 18764 . . . . . . 7 ((𝐹 ∈ (SubGrp‘𝑄) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8885, 86, 87syl2anc 584 . . . . . 6 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝑄)‘({𝑥} 𝑁)) ∈ 𝐹)
8984, 88eqeltrrd 2840 . . . . 5 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ({((invg𝐺)‘𝑥)} 𝑁) ∈ 𝐹)
9070, 74, 89elrabd 3626 . . . 4 (((𝜑𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝐹) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9190anasss 467 . . 3 ((𝜑 ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝐹)) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
9250, 91sylan2b 594 . 2 ((𝜑𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹}) → ((invg𝐺)‘𝑥) ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹})
931, 2, 3, 7, 27, 67, 92, 15issubgrpd2 18771 1 (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  [cec 8496  Basecbs 16912  s cress 16941  +gcplusg 16962  0gc0g 17150   /s cqus 17216  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749  NrmSGrpcnsg 18750   ~QG cqg 18751  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-nsg 18753  df-eqg 18754  df-oppg 18950  df-lsm 19241
This theorem is referenced by:  nsgmgc  31597  nsgqusf1olem2  31599  nsgqusf1olem3  31600
  Copyright terms: Public domain W3C validator