![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > quseccl | Structured version Visualization version GIF version |
Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
qusadd.v | ⊢ 𝑉 = (Base‘𝐺) |
quseccl.b | ⊢ 𝐵 = (Base‘𝐻) |
Ref | Expression |
---|---|
quseccl | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6938 | . . . 4 ⊢ (𝐺 ~QG 𝑆) ∈ V | |
2 | 1 | ecelqsi 8069 | . . 3 ⊢ (𝑋 ∈ 𝑉 → [𝑋](𝐺 ~QG 𝑆) ∈ (𝑉 / (𝐺 ~QG 𝑆))) |
3 | 2 | adantl 475 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (𝑉 / (𝐺 ~QG 𝑆))) |
4 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))) |
6 | qusadd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → 𝑉 = (Base‘𝐺)) |
8 | 1 | a1i 11 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝐺 ~QG 𝑆) ∈ V) |
9 | nsgsubg 17978 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
10 | subgrcl 17951 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
12 | 11 | adantr 474 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ Grp) |
13 | 5, 7, 8, 12 | qusbas 16559 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑉 / (𝐺 ~QG 𝑆)) = (Base‘𝐻)) |
14 | quseccl.b | . . 3 ⊢ 𝐵 = (Base‘𝐻) | |
15 | 13, 14 | syl6eqr 2880 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑉 / (𝐺 ~QG 𝑆)) = 𝐵) |
16 | 3, 15 | eleqtrd 2909 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Vcvv 3415 ‘cfv 6124 (class class class)co 6906 [cec 8008 / cqs 8009 Basecbs 16223 /s cqus 16519 Grpcgrp 17777 SubGrpcsubg 17940 NrmSGrpcnsg 17941 ~QG cqg 17942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-ec 8012 df-qs 8016 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-sup 8618 df-inf 8619 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-dec 11823 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-ip 16324 df-tset 16325 df-ple 16326 df-ds 16328 df-imas 16522 df-qus 16523 df-subg 17943 df-nsg 17944 |
This theorem is referenced by: qus0 18004 qusinv 18005 qussub 18006 qusghm 18049 qustgplem 22295 |
Copyright terms: Public domain | W3C validator |