MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1omALT Structured version   Visualization version   GIF version

Theorem r1omALT 10797
Description: Alternate proof of r1om 10264, shorter as a consequence of inar1 10796, but requiring AC. (Contributed by Mario Carneiro, 27-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
r1omALT (𝑅1‘ω) ≈ ω

Proof of Theorem r1omALT
StepHypRef Expression
1 omina 10712 . 2 ω ∈ Inacc
2 inar1 10796 . 2 (ω ∈ Inacc → (𝑅1‘ω) ≈ ω)
31, 2ax-mp 5 1 (𝑅1‘ω) ≈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2107   class class class wbr 5123  cfv 6540  ωcom 7868  cen 8963  𝑅1cr1 9783  Inacccina 10704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-inf2 9662  ax-ac2 10484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-oi 9531  df-r1 9785  df-rank 9786  df-card 9960  df-cf 9962  df-acn 9963  df-ac 10137  df-wina 10705  df-ina 10706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator