MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0p1 Structured version   Visualization version   GIF version

Theorem bdayn0p1 28294
Description: The birthday of 𝐴 +s 1s is the successor of the birthday of 𝐴 when 𝐴 is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0p1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))

Proof of Theorem bdayn0p1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0scut2 28263 . . 3 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) = ({𝐴} |s ∅))
21fveq2d 6826 . 2 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = ( bday ‘({𝐴} |s ∅)))
3 n0sno 28252 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
4 snelpwi 5383 . . . . 5 (𝐴 No → {𝐴} ∈ 𝒫 No )
5 nulssgt 27739 . . . . 5 ({𝐴} ∈ 𝒫 No → {𝐴} <<s ∅)
63, 4, 53syl 18 . . . 4 (𝐴 ∈ ℕ0s → {𝐴} <<s ∅)
7 un0 4341 . . . . . 6 ({𝐴} ∪ ∅) = {𝐴}
87imaeq2i 6006 . . . . 5 ( bday “ ({𝐴} ∪ ∅)) = ( bday “ {𝐴})
9 bdayfn 27712 . . . . . . . 8 bday Fn No
109a1i 11 . . . . . . 7 (𝐴 ∈ ℕ0s bday Fn No )
1110, 3fnimasnd 7299 . . . . . 6 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) = {( bday 𝐴)})
12 ssun2 4126 . . . . . . 7 {( bday 𝐴)} ⊆ (( bday 𝐴) ∪ {( bday 𝐴)})
13 df-suc 6312 . . . . . . 7 suc ( bday 𝐴) = (( bday 𝐴) ∪ {( bday 𝐴)})
1412, 13sseqtrri 3979 . . . . . 6 {( bday 𝐴)} ⊆ suc ( bday 𝐴)
1511, 14eqsstrdi 3974 . . . . 5 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) ⊆ suc ( bday 𝐴))
168, 15eqsstrid 3968 . . . 4 (𝐴 ∈ ℕ0s → ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴))
17 bdayelon 27715 . . . . . 6 ( bday 𝐴) ∈ On
18 onsuc 7743 . . . . . 6 (( bday 𝐴) ∈ On → suc ( bday 𝐴) ∈ On)
1917, 18ax-mp 5 . . . . 5 suc ( bday 𝐴) ∈ On
20 scutbdaybnd 27756 . . . . 5 (({𝐴} <<s ∅ ∧ suc ( bday 𝐴) ∈ On ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
2119, 20mp3an2 1451 . . . 4 (({𝐴} <<s ∅ ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
226, 16, 21syl2anc 584 . . 3 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
23 ssltsep 27730 . . . . . . . 8 ({𝐴} <<s {𝑧} → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦)
24 breq1 5092 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
2524ralbidv 3155 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝑧}𝐴 <s 𝑦))
26 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
27 breq2 5093 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝐴 <s 𝑦𝐴 <s 𝑧))
2826, 27ralsn 4631 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑧}𝐴 <s 𝑦𝐴 <s 𝑧)
2925, 28bitrdi 287 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3029ralsng 4625 . . . . . . . . . 10 (𝐴 ∈ ℕ0s → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3130adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
32 n0ons 28264 . . . . . . . . . . 11 (𝐴 ∈ ℕ0s𝐴 ∈ Ons)
33 onnolt 28203 . . . . . . . . . . 11 ((𝐴 ∈ Ons𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
3432, 33syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℕ0s𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
35343expia 1121 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (𝐴 <s 𝑧 → ( bday 𝐴) ∈ ( bday 𝑧)))
3631, 35sylbid 240 . . . . . . . 8 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 → ( bday 𝐴) ∈ ( bday 𝑧)))
3723, 36syl5 34 . . . . . . 7 ((𝐴 ∈ ℕ0s𝑧 No ) → ({𝐴} <<s {𝑧} → ( bday 𝐴) ∈ ( bday 𝑧)))
3837adantrd 491 . . . . . 6 ((𝐴 ∈ ℕ0s𝑧 No ) → (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
3938ralrimiva 3124 . . . . 5 (𝐴 ∈ ℕ0s → ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
40 ssint 4912 . . . . . 6 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦)
41 ssrab2 4027 . . . . . . . 8 {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
42 sseq2 3956 . . . . . . . . 9 (𝑦 = ( bday 𝑧) → (suc ( bday 𝐴) ⊆ 𝑦 ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧)))
4342ralima 7171 . . . . . . . 8 (( bday Fn No ∧ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧)))
449, 41, 43mp2an 692 . . . . . . 7 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
45 bdayelon 27715 . . . . . . . . . 10 ( bday 𝑧) ∈ On
4617, 45onsucssi 7771 . . . . . . . . 9 (( bday 𝐴) ∈ ( bday 𝑧) ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧))
4746ralbii 3078 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
48 sneq 4583 . . . . . . . . . . 11 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4948breq2d 5101 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝐴} <<s {𝑥} ↔ {𝐴} <<s {𝑧}))
5048breq1d 5099 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝑥} <<s ∅ ↔ {𝑧} <<s ∅))
5149, 50anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑧 → (({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅)))
5251ralrab 3648 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5347, 52bitr3i 277 . . . . . . 7 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5444, 53bitri 275 . . . . . 6 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5540, 54bitri 275 . . . . 5 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5639, 55sylibr 234 . . . 4 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
57 scutbday 27745 . . . . 5 ({𝐴} <<s ∅ → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
586, 57syl 17 . . . 4 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
5956, 58sseqtrrd 3967 . . 3 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday ‘({𝐴} |s ∅)))
6022, 59eqssd 3947 . 2 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = suc ( bday 𝐴))
612, 60eqtrd 2766 1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cun 3895  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   cint 4895   class class class wbr 5089  cima 5617  Oncon0 6306  suc csuc 6308   Fn wfn 6476  cfv 6481  (class class class)co 7346   No csur 27578   <s cslt 27579   bday cbday 27580   <<s csslt 27720   |s cscut 27722   1s c1s 27767   +s cadds 27902  Onscons 28188  0scnn0s 28242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-ons 28189  df-n0s 28244
This theorem is referenced by:  bdayn0sf1o  28295
  Copyright terms: Public domain W3C validator