MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0p1 Structured version   Visualization version   GIF version

Theorem bdayn0p1 28310
Description: The birthday of 𝐴 +s 1s is the successor of the birthday of 𝐴 when 𝐴 is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0p1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))

Proof of Theorem bdayn0p1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0scut2 28279 . . 3 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) = ({𝐴} |s ∅))
21fveq2d 6880 . 2 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = ( bday ‘({𝐴} |s ∅)))
3 n0sno 28268 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
4 snelpwi 5418 . . . . 5 (𝐴 No → {𝐴} ∈ 𝒫 No )
5 nulssgt 27762 . . . . 5 ({𝐴} ∈ 𝒫 No → {𝐴} <<s ∅)
63, 4, 53syl 18 . . . 4 (𝐴 ∈ ℕ0s → {𝐴} <<s ∅)
7 un0 4369 . . . . . 6 ({𝐴} ∪ ∅) = {𝐴}
87imaeq2i 6045 . . . . 5 ( bday “ ({𝐴} ∪ ∅)) = ( bday “ {𝐴})
9 bdayfn 27737 . . . . . . . 8 bday Fn No
109a1i 11 . . . . . . 7 (𝐴 ∈ ℕ0s bday Fn No )
1110, 3fnimasnd 7358 . . . . . 6 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) = {( bday 𝐴)})
12 ssun2 4154 . . . . . . 7 {( bday 𝐴)} ⊆ (( bday 𝐴) ∪ {( bday 𝐴)})
13 df-suc 6358 . . . . . . 7 suc ( bday 𝐴) = (( bday 𝐴) ∪ {( bday 𝐴)})
1412, 13sseqtrri 4008 . . . . . 6 {( bday 𝐴)} ⊆ suc ( bday 𝐴)
1511, 14eqsstrdi 4003 . . . . 5 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) ⊆ suc ( bday 𝐴))
168, 15eqsstrid 3997 . . . 4 (𝐴 ∈ ℕ0s → ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴))
17 bdayelon 27740 . . . . . 6 ( bday 𝐴) ∈ On
18 onsuc 7805 . . . . . 6 (( bday 𝐴) ∈ On → suc ( bday 𝐴) ∈ On)
1917, 18ax-mp 5 . . . . 5 suc ( bday 𝐴) ∈ On
20 scutbdaybnd 27779 . . . . 5 (({𝐴} <<s ∅ ∧ suc ( bday 𝐴) ∈ On ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
2119, 20mp3an2 1451 . . . 4 (({𝐴} <<s ∅ ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
226, 16, 21syl2anc 584 . . 3 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
23 ssltsep 27754 . . . . . . . 8 ({𝐴} <<s {𝑧} → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦)
24 breq1 5122 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
2524ralbidv 3163 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝑧}𝐴 <s 𝑦))
26 vex 3463 . . . . . . . . . . . . 13 𝑧 ∈ V
27 breq2 5123 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝐴 <s 𝑦𝐴 <s 𝑧))
2826, 27ralsn 4657 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑧}𝐴 <s 𝑦𝐴 <s 𝑧)
2925, 28bitrdi 287 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3029ralsng 4651 . . . . . . . . . 10 (𝐴 ∈ ℕ0s → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3130adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
32 n0ons 28280 . . . . . . . . . . 11 (𝐴 ∈ ℕ0s𝐴 ∈ Ons)
33 onnolt 28219 . . . . . . . . . . 11 ((𝐴 ∈ Ons𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
3432, 33syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℕ0s𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
35343expia 1121 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (𝐴 <s 𝑧 → ( bday 𝐴) ∈ ( bday 𝑧)))
3631, 35sylbid 240 . . . . . . . 8 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 → ( bday 𝐴) ∈ ( bday 𝑧)))
3723, 36syl5 34 . . . . . . 7 ((𝐴 ∈ ℕ0s𝑧 No ) → ({𝐴} <<s {𝑧} → ( bday 𝐴) ∈ ( bday 𝑧)))
3837adantrd 491 . . . . . 6 ((𝐴 ∈ ℕ0s𝑧 No ) → (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
3938ralrimiva 3132 . . . . 5 (𝐴 ∈ ℕ0s → ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
40 ssint 4940 . . . . . 6 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦)
41 ssrab2 4055 . . . . . . . 8 {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
42 sseq2 3985 . . . . . . . . 9 (𝑦 = ( bday 𝑧) → (suc ( bday 𝐴) ⊆ 𝑦 ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧)))
4342ralima 7229 . . . . . . . 8 (( bday Fn No ∧ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧)))
449, 41, 43mp2an 692 . . . . . . 7 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
45 bdayelon 27740 . . . . . . . . . 10 ( bday 𝑧) ∈ On
4617, 45onsucssi 7836 . . . . . . . . 9 (( bday 𝐴) ∈ ( bday 𝑧) ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧))
4746ralbii 3082 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
48 sneq 4611 . . . . . . . . . . 11 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4948breq2d 5131 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝐴} <<s {𝑥} ↔ {𝐴} <<s {𝑧}))
5048breq1d 5129 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝑥} <<s ∅ ↔ {𝑧} <<s ∅))
5149, 50anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑧 → (({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅)))
5251ralrab 3677 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5347, 52bitr3i 277 . . . . . . 7 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5444, 53bitri 275 . . . . . 6 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5540, 54bitri 275 . . . . 5 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5639, 55sylibr 234 . . . 4 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
57 scutbday 27768 . . . . 5 ({𝐴} <<s ∅ → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
586, 57syl 17 . . . 4 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
5956, 58sseqtrrd 3996 . . 3 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday ‘({𝐴} |s ∅)))
6022, 59eqssd 3976 . 2 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = suc ( bday 𝐴))
612, 60eqtrd 2770 1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cun 3924  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cint 4922   class class class wbr 5119  cima 5657  Oncon0 6352  suc csuc 6354   Fn wfn 6526  cfv 6531  (class class class)co 7405   No csur 27603   <s cslt 27604   bday cbday 27605   <<s csslt 27744   |s cscut 27746   1s c1s 27787   +s cadds 27918  Onscons 28204  0scnn0s 28258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-ons 28205  df-n0s 28260
This theorem is referenced by:  bdayn0sf1o  28311
  Copyright terms: Public domain W3C validator