| Step | Hyp | Ref
| Expression |
| 1 | | n0scut2 28279 |
. . 3
⊢ (𝐴 ∈ ℕ0s
→ (𝐴 +s
1s ) = ({𝐴} |s
∅)) |
| 2 | 1 | fveq2d 6880 |
. 2
⊢ (𝐴 ∈ ℕ0s
→ ( bday ‘(𝐴 +s 1s )) = ( bday ‘({𝐴} |s ∅))) |
| 3 | | n0sno 28268 |
. . . . 5
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 ∈ No ) |
| 4 | | snelpwi 5418 |
. . . . 5
⊢ (𝐴 ∈
No → {𝐴}
∈ 𝒫 No ) |
| 5 | | nulssgt 27762 |
. . . . 5
⊢ ({𝐴} ∈ 𝒫 No → {𝐴} <<s ∅) |
| 6 | 3, 4, 5 | 3syl 18 |
. . . 4
⊢ (𝐴 ∈ ℕ0s
→ {𝐴} <<s
∅) |
| 7 | | un0 4369 |
. . . . . 6
⊢ ({𝐴} ∪ ∅) = {𝐴} |
| 8 | 7 | imaeq2i 6045 |
. . . . 5
⊢ ( bday “ ({𝐴} ∪ ∅)) = (
bday “ {𝐴}) |
| 9 | | bdayfn 27737 |
. . . . . . . 8
⊢ bday Fn No
|
| 10 | 9 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0s
→ bday Fn No
) |
| 11 | 10, 3 | fnimasnd 7358 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ ( bday “ {𝐴}) = {( bday
‘𝐴)}) |
| 12 | | ssun2 4154 |
. . . . . . 7
⊢ {( bday ‘𝐴)} ⊆ (( bday
‘𝐴) ∪
{( bday ‘𝐴)}) |
| 13 | | df-suc 6358 |
. . . . . . 7
⊢ suc
( bday ‘𝐴) = (( bday
‘𝐴) ∪
{( bday ‘𝐴)}) |
| 14 | 12, 13 | sseqtrri 4008 |
. . . . . 6
⊢ {( bday ‘𝐴)} ⊆ suc ( bday
‘𝐴) |
| 15 | 11, 14 | eqsstrdi 4003 |
. . . . 5
⊢ (𝐴 ∈ ℕ0s
→ ( bday “ {𝐴}) ⊆ suc ( bday
‘𝐴)) |
| 16 | 8, 15 | eqsstrid 3997 |
. . . 4
⊢ (𝐴 ∈ ℕ0s
→ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday ‘𝐴)) |
| 17 | | bdayelon 27740 |
. . . . . 6
⊢ ( bday ‘𝐴) ∈ On |
| 18 | | onsuc 7805 |
. . . . . 6
⊢ (( bday ‘𝐴) ∈ On → suc ( bday ‘𝐴) ∈ On) |
| 19 | 17, 18 | ax-mp 5 |
. . . . 5
⊢ suc
( bday ‘𝐴) ∈ On |
| 20 | | scutbdaybnd 27779 |
. . . . 5
⊢ (({𝐴} <<s ∅ ∧ suc
( bday ‘𝐴) ∈ On ∧ (
bday “ ({𝐴}
∪ ∅)) ⊆ suc ( bday ‘𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday ‘𝐴)) |
| 21 | 19, 20 | mp3an2 1451 |
. . . 4
⊢ (({𝐴} <<s ∅ ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday ‘𝐴)) → ( bday
‘({𝐴} |s
∅)) ⊆ suc ( bday ‘𝐴)) |
| 22 | 6, 16, 21 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ ℕ0s
→ ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday ‘𝐴)) |
| 23 | | ssltsep 27754 |
. . . . . . . 8
⊢ ({𝐴} <<s {𝑧} → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦) |
| 24 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦)) |
| 25 | 24 | ralbidv 3163 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝑧}𝐴 <s 𝑦)) |
| 26 | | vex 3463 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
| 27 | | breq2 5123 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝐴 <s 𝑦 ↔ 𝐴 <s 𝑧)) |
| 28 | 26, 27 | ralsn 4657 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
{𝑧}𝐴 <s 𝑦 ↔ 𝐴 <s 𝑧) |
| 29 | 25, 28 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ 𝐴 <s 𝑧)) |
| 30 | 29 | ralsng 4651 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ0s
→ (∀𝑥 ∈
{𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ 𝐴 <s 𝑧)) |
| 31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0s
∧ 𝑧 ∈ No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ 𝐴 <s 𝑧)) |
| 32 | | n0ons 28280 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 ∈
Ons) |
| 33 | | onnolt 28219 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Ons ∧
𝑧 ∈ No ∧ 𝐴 <s 𝑧) → ( bday
‘𝐴) ∈
( bday ‘𝑧)) |
| 34 | 32, 33 | syl3an1 1163 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0s
∧ 𝑧 ∈ No ∧ 𝐴 <s 𝑧) → ( bday
‘𝐴) ∈
( bday ‘𝑧)) |
| 35 | 34 | 3expia 1121 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0s
∧ 𝑧 ∈ No ) → (𝐴 <s 𝑧 → ( bday
‘𝐴) ∈
( bday ‘𝑧))) |
| 36 | 31, 35 | sylbid 240 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ0s
∧ 𝑧 ∈ No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 → ( bday
‘𝐴) ∈
( bday ‘𝑧))) |
| 37 | 23, 36 | syl5 34 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0s
∧ 𝑧 ∈ No ) → ({𝐴} <<s {𝑧} → ( bday
‘𝐴) ∈
( bday ‘𝑧))) |
| 38 | 37 | adantrd 491 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ0s
∧ 𝑧 ∈ No ) → (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday ‘𝐴) ∈ ( bday
‘𝑧))) |
| 39 | 38 | ralrimiva 3132 |
. . . . 5
⊢ (𝐴 ∈ ℕ0s
→ ∀𝑧 ∈
No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday ‘𝐴) ∈ ( bday
‘𝑧))) |
| 40 | | ssint 4940 |
. . . . . 6
⊢ (suc
( bday ‘𝐴) ⊆ ∩
( bday “ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)}) ↔
∀𝑦 ∈ ( bday “ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)})suc ( bday ‘𝐴) ⊆ 𝑦) |
| 41 | | ssrab2 4055 |
. . . . . . . 8
⊢ {𝑥 ∈
No ∣ ({𝐴}
<<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆
No |
| 42 | | sseq2 3985 |
. . . . . . . . 9
⊢ (𝑦 = ( bday
‘𝑧) →
(suc ( bday ‘𝐴) ⊆ 𝑦 ↔ suc ( bday
‘𝐴) ⊆
( bday ‘𝑧))) |
| 43 | 42 | ralima 7229 |
. . . . . . . 8
⊢ (( bday Fn No ∧ {𝑥 ∈
No ∣ ({𝐴}
<<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆
No ) → (∀𝑦 ∈ ( bday
“ {𝑥 ∈ No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday ‘𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)}suc ( bday ‘𝐴) ⊆ ( bday
‘𝑧))) |
| 44 | 9, 41, 43 | mp2an 692 |
. . . . . . 7
⊢
(∀𝑦 ∈
( bday “ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)})suc ( bday ‘𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)}suc ( bday ‘𝐴) ⊆ ( bday
‘𝑧)) |
| 45 | | bdayelon 27740 |
. . . . . . . . . 10
⊢ ( bday ‘𝑧) ∈ On |
| 46 | 17, 45 | onsucssi 7836 |
. . . . . . . . 9
⊢ (( bday ‘𝐴) ∈ ( bday
‘𝑧) ↔ suc
( bday ‘𝐴) ⊆ ( bday
‘𝑧)) |
| 47 | 46 | ralbii 3082 |
. . . . . . . 8
⊢
(∀𝑧 ∈
{𝑥 ∈ No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} (
bday ‘𝐴)
∈ ( bday ‘𝑧) ↔ ∀𝑧 ∈ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)}suc ( bday ‘𝐴) ⊆ ( bday
‘𝑧)) |
| 48 | | sneq 4611 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → {𝑥} = {𝑧}) |
| 49 | 48 | breq2d 5131 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ({𝐴} <<s {𝑥} ↔ {𝐴} <<s {𝑧})) |
| 50 | 48 | breq1d 5129 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ({𝑥} <<s ∅ ↔ {𝑧} <<s
∅)) |
| 51 | 49, 50 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅))) |
| 52 | 51 | ralrab 3677 |
. . . . . . . 8
⊢
(∀𝑧 ∈
{𝑥 ∈ No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} (
bday ‘𝐴)
∈ ( bday ‘𝑧) ↔ ∀𝑧 ∈ No
(({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday ‘𝐴) ∈ ( bday
‘𝑧))) |
| 53 | 47, 52 | bitr3i 277 |
. . . . . . 7
⊢
(∀𝑧 ∈
{𝑥 ∈ No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday ‘𝐴) ⊆ ( bday
‘𝑧) ↔
∀𝑧 ∈ No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday ‘𝐴) ∈ ( bday
‘𝑧))) |
| 54 | 44, 53 | bitri 275 |
. . . . . 6
⊢
(∀𝑦 ∈
( bday “ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)})suc ( bday ‘𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ No
(({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday ‘𝐴) ∈ ( bday
‘𝑧))) |
| 55 | 40, 54 | bitri 275 |
. . . . 5
⊢ (suc
( bday ‘𝐴) ⊆ ∩
( bday “ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s ∅)}) ↔
∀𝑧 ∈ No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday ‘𝐴) ∈ ( bday
‘𝑧))) |
| 56 | 39, 55 | sylibr 234 |
. . . 4
⊢ (𝐴 ∈ ℕ0s
→ suc ( bday ‘𝐴) ⊆ ∩
( bday “ {𝑥 ∈ No
∣ ({𝐴} <<s
{𝑥} ∧ {𝑥} <<s
∅)})) |
| 57 | | scutbday 27768 |
. . . . 5
⊢ ({𝐴} <<s ∅ →
( bday ‘({𝐴} |s ∅)) = ∩ ( bday “ {𝑥 ∈
No ∣ ({𝐴}
<<s {𝑥} ∧ {𝑥} <<s
∅)})) |
| 58 | 6, 57 | syl 17 |
. . . 4
⊢ (𝐴 ∈ ℕ0s
→ ( bday ‘({𝐴} |s ∅)) = ∩ ( bday “ {𝑥 ∈
No ∣ ({𝐴}
<<s {𝑥} ∧ {𝑥} <<s
∅)})) |
| 59 | 56, 58 | sseqtrrd 3996 |
. . 3
⊢ (𝐴 ∈ ℕ0s
→ suc ( bday ‘𝐴) ⊆ ( bday
‘({𝐴} |s
∅))) |
| 60 | 22, 59 | eqssd 3976 |
. 2
⊢ (𝐴 ∈ ℕ0s
→ ( bday ‘({𝐴} |s ∅)) = suc (
bday ‘𝐴)) |
| 61 | 2, 60 | eqtrd 2770 |
1
⊢ (𝐴 ∈ ℕ0s
→ ( bday ‘(𝐴 +s 1s )) = suc ( bday ‘𝐴)) |