MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0p1 Structured version   Visualization version   GIF version

Theorem bdayn0p1 28265
Description: The birthday of 𝐴 +s 1s is the successor of the birthday of 𝐴 when 𝐴 is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0p1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))

Proof of Theorem bdayn0p1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0scut2 28234 . . 3 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) = ({𝐴} |s ∅))
21fveq2d 6826 . 2 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = ( bday ‘({𝐴} |s ∅)))
3 n0sno 28223 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
4 snelpwi 5386 . . . . 5 (𝐴 No → {𝐴} ∈ 𝒫 No )
5 nulssgt 27710 . . . . 5 ({𝐴} ∈ 𝒫 No → {𝐴} <<s ∅)
63, 4, 53syl 18 . . . 4 (𝐴 ∈ ℕ0s → {𝐴} <<s ∅)
7 un0 4345 . . . . . 6 ({𝐴} ∪ ∅) = {𝐴}
87imaeq2i 6009 . . . . 5 ( bday “ ({𝐴} ∪ ∅)) = ( bday “ {𝐴})
9 bdayfn 27683 . . . . . . . 8 bday Fn No
109a1i 11 . . . . . . 7 (𝐴 ∈ ℕ0s bday Fn No )
1110, 3fnimasnd 7302 . . . . . 6 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) = {( bday 𝐴)})
12 ssun2 4130 . . . . . . 7 {( bday 𝐴)} ⊆ (( bday 𝐴) ∪ {( bday 𝐴)})
13 df-suc 6313 . . . . . . 7 suc ( bday 𝐴) = (( bday 𝐴) ∪ {( bday 𝐴)})
1412, 13sseqtrri 3985 . . . . . 6 {( bday 𝐴)} ⊆ suc ( bday 𝐴)
1511, 14eqsstrdi 3980 . . . . 5 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) ⊆ suc ( bday 𝐴))
168, 15eqsstrid 3974 . . . 4 (𝐴 ∈ ℕ0s → ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴))
17 bdayelon 27686 . . . . . 6 ( bday 𝐴) ∈ On
18 onsuc 7746 . . . . . 6 (( bday 𝐴) ∈ On → suc ( bday 𝐴) ∈ On)
1917, 18ax-mp 5 . . . . 5 suc ( bday 𝐴) ∈ On
20 scutbdaybnd 27727 . . . . 5 (({𝐴} <<s ∅ ∧ suc ( bday 𝐴) ∈ On ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
2119, 20mp3an2 1451 . . . 4 (({𝐴} <<s ∅ ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
226, 16, 21syl2anc 584 . . 3 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
23 ssltsep 27701 . . . . . . . 8 ({𝐴} <<s {𝑧} → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦)
24 breq1 5095 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
2524ralbidv 3152 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝑧}𝐴 <s 𝑦))
26 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
27 breq2 5096 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝐴 <s 𝑦𝐴 <s 𝑧))
2826, 27ralsn 4633 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑧}𝐴 <s 𝑦𝐴 <s 𝑧)
2925, 28bitrdi 287 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3029ralsng 4627 . . . . . . . . . 10 (𝐴 ∈ ℕ0s → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3130adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
32 n0ons 28235 . . . . . . . . . . 11 (𝐴 ∈ ℕ0s𝐴 ∈ Ons)
33 onnolt 28174 . . . . . . . . . . 11 ((𝐴 ∈ Ons𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
3432, 33syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℕ0s𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
35343expia 1121 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (𝐴 <s 𝑧 → ( bday 𝐴) ∈ ( bday 𝑧)))
3631, 35sylbid 240 . . . . . . . 8 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 → ( bday 𝐴) ∈ ( bday 𝑧)))
3723, 36syl5 34 . . . . . . 7 ((𝐴 ∈ ℕ0s𝑧 No ) → ({𝐴} <<s {𝑧} → ( bday 𝐴) ∈ ( bday 𝑧)))
3837adantrd 491 . . . . . 6 ((𝐴 ∈ ℕ0s𝑧 No ) → (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
3938ralrimiva 3121 . . . . 5 (𝐴 ∈ ℕ0s → ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
40 ssint 4914 . . . . . 6 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦)
41 ssrab2 4031 . . . . . . . 8 {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
42 sseq2 3962 . . . . . . . . 9 (𝑦 = ( bday 𝑧) → (suc ( bday 𝐴) ⊆ 𝑦 ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧)))
4342ralima 7173 . . . . . . . 8 (( bday Fn No ∧ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧)))
449, 41, 43mp2an 692 . . . . . . 7 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
45 bdayelon 27686 . . . . . . . . . 10 ( bday 𝑧) ∈ On
4617, 45onsucssi 7774 . . . . . . . . 9 (( bday 𝐴) ∈ ( bday 𝑧) ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧))
4746ralbii 3075 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
48 sneq 4587 . . . . . . . . . . 11 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4948breq2d 5104 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝐴} <<s {𝑥} ↔ {𝐴} <<s {𝑧}))
5048breq1d 5102 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝑥} <<s ∅ ↔ {𝑧} <<s ∅))
5149, 50anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑧 → (({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅)))
5251ralrab 3654 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5347, 52bitr3i 277 . . . . . . 7 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5444, 53bitri 275 . . . . . 6 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5540, 54bitri 275 . . . . 5 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5639, 55sylibr 234 . . . 4 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
57 scutbday 27716 . . . . 5 ({𝐴} <<s ∅ → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
586, 57syl 17 . . . 4 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
5956, 58sseqtrrd 3973 . . 3 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday ‘({𝐴} |s ∅)))
6022, 59eqssd 3953 . 2 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = suc ( bday 𝐴))
612, 60eqtrd 2764 1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  cun 3901  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   cint 4896   class class class wbr 5092  cima 5622  Oncon0 6307  suc csuc 6309   Fn wfn 6477  cfv 6482  (class class class)co 7349   No csur 27549   <s cslt 27550   bday cbday 27551   <<s csslt 27691   |s cscut 27693   1s c1s 27738   +s cadds 27873  Onscons 28159  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-ons 28160  df-n0s 28215
This theorem is referenced by:  bdayn0sf1o  28266
  Copyright terms: Public domain W3C validator