MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0p1 Structured version   Visualization version   GIF version

Theorem bdayn0p1 28299
Description: The birthday of 𝐴 +s 1s is the successor of the birthday of 𝐴 when 𝐴 is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0p1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))

Proof of Theorem bdayn0p1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0scut2 28268 . . 3 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) = ({𝐴} |s ∅))
21fveq2d 6844 . 2 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = ( bday ‘({𝐴} |s ∅)))
3 n0sno 28257 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
4 snelpwi 5398 . . . . 5 (𝐴 No → {𝐴} ∈ 𝒫 No )
5 nulssgt 27745 . . . . 5 ({𝐴} ∈ 𝒫 No → {𝐴} <<s ∅)
63, 4, 53syl 18 . . . 4 (𝐴 ∈ ℕ0s → {𝐴} <<s ∅)
7 un0 4353 . . . . . 6 ({𝐴} ∪ ∅) = {𝐴}
87imaeq2i 6018 . . . . 5 ( bday “ ({𝐴} ∪ ∅)) = ( bday “ {𝐴})
9 bdayfn 27719 . . . . . . . 8 bday Fn No
109a1i 11 . . . . . . 7 (𝐴 ∈ ℕ0s bday Fn No )
1110, 3fnimasnd 7322 . . . . . 6 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) = {( bday 𝐴)})
12 ssun2 4138 . . . . . . 7 {( bday 𝐴)} ⊆ (( bday 𝐴) ∪ {( bday 𝐴)})
13 df-suc 6326 . . . . . . 7 suc ( bday 𝐴) = (( bday 𝐴) ∪ {( bday 𝐴)})
1412, 13sseqtrri 3993 . . . . . 6 {( bday 𝐴)} ⊆ suc ( bday 𝐴)
1511, 14eqsstrdi 3988 . . . . 5 (𝐴 ∈ ℕ0s → ( bday “ {𝐴}) ⊆ suc ( bday 𝐴))
168, 15eqsstrid 3982 . . . 4 (𝐴 ∈ ℕ0s → ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴))
17 bdayelon 27722 . . . . . 6 ( bday 𝐴) ∈ On
18 onsuc 7767 . . . . . 6 (( bday 𝐴) ∈ On → suc ( bday 𝐴) ∈ On)
1917, 18ax-mp 5 . . . . 5 suc ( bday 𝐴) ∈ On
20 scutbdaybnd 27762 . . . . 5 (({𝐴} <<s ∅ ∧ suc ( bday 𝐴) ∈ On ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
2119, 20mp3an2 1451 . . . 4 (({𝐴} <<s ∅ ∧ ( bday “ ({𝐴} ∪ ∅)) ⊆ suc ( bday 𝐴)) → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
226, 16, 21syl2anc 584 . . 3 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) ⊆ suc ( bday 𝐴))
23 ssltsep 27737 . . . . . . . 8 ({𝐴} <<s {𝑧} → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦)
24 breq1 5105 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
2524ralbidv 3156 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 ↔ ∀𝑦 ∈ {𝑧}𝐴 <s 𝑦))
26 vex 3448 . . . . . . . . . . . . 13 𝑧 ∈ V
27 breq2 5106 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝐴 <s 𝑦𝐴 <s 𝑧))
2826, 27ralsn 4641 . . . . . . . . . . . 12 (∀𝑦 ∈ {𝑧}𝐴 <s 𝑦𝐴 <s 𝑧)
2925, 28bitrdi 287 . . . . . . . . . . 11 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3029ralsng 4635 . . . . . . . . . 10 (𝐴 ∈ ℕ0s → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
3130adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦𝐴 <s 𝑧))
32 n0ons 28269 . . . . . . . . . . 11 (𝐴 ∈ ℕ0s𝐴 ∈ Ons)
33 onnolt 28208 . . . . . . . . . . 11 ((𝐴 ∈ Ons𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
3432, 33syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℕ0s𝑧 No 𝐴 <s 𝑧) → ( bday 𝐴) ∈ ( bday 𝑧))
35343expia 1121 . . . . . . . . 9 ((𝐴 ∈ ℕ0s𝑧 No ) → (𝐴 <s 𝑧 → ( bday 𝐴) ∈ ( bday 𝑧)))
3631, 35sylbid 240 . . . . . . . 8 ((𝐴 ∈ ℕ0s𝑧 No ) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝑧}𝑥 <s 𝑦 → ( bday 𝐴) ∈ ( bday 𝑧)))
3723, 36syl5 34 . . . . . . 7 ((𝐴 ∈ ℕ0s𝑧 No ) → ({𝐴} <<s {𝑧} → ( bday 𝐴) ∈ ( bday 𝑧)))
3837adantrd 491 . . . . . 6 ((𝐴 ∈ ℕ0s𝑧 No ) → (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
3938ralrimiva 3125 . . . . 5 (𝐴 ∈ ℕ0s → ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
40 ssint 4924 . . . . . 6 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦)
41 ssrab2 4039 . . . . . . . 8 {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No
42 sseq2 3970 . . . . . . . . 9 (𝑦 = ( bday 𝑧) → (suc ( bday 𝐴) ⊆ 𝑦 ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧)))
4342ralima 7193 . . . . . . . 8 (( bday Fn No ∧ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ⊆ No ) → (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧)))
449, 41, 43mp2an 692 . . . . . . 7 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
45 bdayelon 27722 . . . . . . . . . 10 ( bday 𝑧) ∈ On
4617, 45onsucssi 7797 . . . . . . . . 9 (( bday 𝐴) ∈ ( bday 𝑧) ↔ suc ( bday 𝐴) ⊆ ( bday 𝑧))
4746ralbii 3075 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧))
48 sneq 4595 . . . . . . . . . . 11 (𝑥 = 𝑧 → {𝑥} = {𝑧})
4948breq2d 5114 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝐴} <<s {𝑥} ↔ {𝐴} <<s {𝑧}))
5048breq1d 5112 . . . . . . . . . 10 (𝑥 = 𝑧 → ({𝑥} <<s ∅ ↔ {𝑧} <<s ∅))
5149, 50anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑧 → (({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅) ↔ ({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅)))
5251ralrab 3662 . . . . . . . 8 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)} ( bday 𝐴) ∈ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5347, 52bitr3i 277 . . . . . . 7 (∀𝑧 ∈ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}suc ( bday 𝐴) ⊆ ( bday 𝑧) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5444, 53bitri 275 . . . . . 6 (∀𝑦 ∈ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)})suc ( bday 𝐴) ⊆ 𝑦 ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5540, 54bitri 275 . . . . 5 (suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}) ↔ ∀𝑧 No (({𝐴} <<s {𝑧} ∧ {𝑧} <<s ∅) → ( bday 𝐴) ∈ ( bday 𝑧)))
5639, 55sylibr 234 . . . 4 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
57 scutbday 27751 . . . . 5 ({𝐴} <<s ∅ → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
586, 57syl 17 . . . 4 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = ( bday “ {𝑥 No ∣ ({𝐴} <<s {𝑥} ∧ {𝑥} <<s ∅)}))
5956, 58sseqtrrd 3981 . . 3 (𝐴 ∈ ℕ0s → suc ( bday 𝐴) ⊆ ( bday ‘({𝐴} |s ∅)))
6022, 59eqssd 3961 . 2 (𝐴 ∈ ℕ0s → ( bday ‘({𝐴} |s ∅)) = suc ( bday 𝐴))
612, 60eqtrd 2764 1 (𝐴 ∈ ℕ0s → ( bday ‘(𝐴 +s 1s )) = suc ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cun 3909  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cint 4906   class class class wbr 5102  cima 5634  Oncon0 6320  suc csuc 6322   Fn wfn 6494  cfv 6499  (class class class)co 7369   No csur 27585   <s cslt 27586   bday cbday 27587   <<s csslt 27727   |s cscut 27729   1s c1s 27773   +s cadds 27907  Onscons 28193  0scnn0s 28247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27588  df-slt 27589  df-bday 27590  df-sle 27691  df-sslt 27728  df-scut 27730  df-0s 27774  df-1s 27775  df-made 27793  df-old 27794  df-left 27796  df-right 27797  df-norec 27886  df-norec2 27897  df-adds 27908  df-negs 27968  df-subs 27969  df-ons 28194  df-n0s 28249
This theorem is referenced by:  bdayn0sf1o  28300
  Copyright terms: Public domain W3C validator