![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniiccmbl | Structured version Visualization version GIF version |
Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25495.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
Ref | Expression |
---|---|
uniiccmbl | ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | 1 | uniiccdif 25520 | . . . 4 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0)) |
3 | 2 | simpld 494 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹)) |
4 | undif 4482 | . . 3 ⊢ (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ↔ (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) |
6 | uniioombl.2 | . . . 4 ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) | |
7 | uniioombl.3 | . . . 4 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
8 | 1, 6, 7 | uniioombl 25531 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ∈ dom vol) |
9 | ovolficcss 25411 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) | |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) |
11 | 10 | ssdifssd 4141 | . . . 4 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ) |
12 | 2 | simprd 495 | . . . 4 ⊢ (𝜑 → (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) |
13 | nulmbl 25477 | . . . 4 ⊢ (((∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) | |
14 | 11, 12, 13 | syl2anc 583 | . . 3 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) |
15 | unmbl 25479 | . . 3 ⊢ ((∪ ran ((,) ∘ 𝐹) ∈ dom vol ∧ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) | |
16 | 8, 14, 15 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) |
17 | 5, 16 | eqeltrrd 2830 | 1 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∪ cuni 4908 Disj wdisj 5113 × cxp 5676 dom cdm 5678 ran crn 5679 ∘ ccom 5682 ⟶wf 6544 ‘cfv 6548 ℝcr 11138 0cc0 11139 1c1 11140 + caddc 11142 ≤ cle 11280 − cmin 11475 ℕcn 12243 (,)cioo 13357 [,]cicc 13360 seqcseq 13999 abscabs 15214 vol*covol 25404 volcvol 25405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-dju 9925 df-card 9963 df-acn 9966 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-n0 12504 df-z 12590 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-rlim 15466 df-sum 15666 df-rest 17404 df-topgen 17425 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22809 df-topon 22826 df-bases 22862 df-cmp 23304 df-ovol 25406 df-vol 25407 |
This theorem is referenced by: dyadmbl 25542 |
Copyright terms: Public domain | W3C validator |