MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccmbl Structured version   Visualization version   GIF version

Theorem uniiccmbl 25491
Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25454.) (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniiccmbl (𝜑 ran ([,] ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniiccmbl
StepHypRef Expression
1 uniioombl.1 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21uniiccdif 25479 . . . 4 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
32simpld 494 . . 3 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
4 undif 4445 . . 3 ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ↔ ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = ran ([,] ∘ 𝐹))
53, 4sylib 218 . 2 (𝜑 → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = ran ([,] ∘ 𝐹))
6 uniioombl.2 . . . 4 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . 4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
81, 6, 7uniioombl 25490 . . 3 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
9 ovolficcss 25370 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
101, 9syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
1110ssdifssd 4110 . . . 4 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ)
122simprd 495 . . . 4 (𝜑 → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
13 nulmbl 25436 . . . 4 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol)
1411, 12, 13syl2anc 584 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol)
15 unmbl 25438 . . 3 (( ran ((,) ∘ 𝐹) ∈ dom vol ∧ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol) → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) ∈ dom vol)
168, 14, 15syl2anc 584 . 2 (𝜑 → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) ∈ dom vol)
175, 16eqeltrrd 2829 1 (𝜑 ran ([,] ∘ 𝐹) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cin 3913  wss 3914   cuni 4871  Disj wdisj 5074   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642  wf 6507  cfv 6511  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  cle 11209  cmin 11405  cn 12186  (,)cioo 13306  [,]cicc 13309  seqcseq 13966  abscabs 15200  vol*covol 25363  volcvol 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366
This theorem is referenced by:  dyadmbl  25501
  Copyright terms: Public domain W3C validator