MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccmbl Structured version   Visualization version   GIF version

Theorem uniiccmbl 24752
Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 24715.) (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniiccmbl (𝜑 ran ([,] ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniiccmbl
StepHypRef Expression
1 uniioombl.1 . . . . 5 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21uniiccdif 24740 . . . 4 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
32simpld 495 . . 3 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
4 undif 4421 . . 3 ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ↔ ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = ran ([,] ∘ 𝐹))
53, 4sylib 217 . 2 (𝜑 → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = ran ([,] ∘ 𝐹))
6 uniioombl.2 . . . 4 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
7 uniioombl.3 . . . 4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
81, 6, 7uniioombl 24751 . . 3 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
9 ovolficcss 24631 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
101, 9syl 17 . . . . 5 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
1110ssdifssd 4082 . . . 4 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ)
122simprd 496 . . . 4 (𝜑 → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
13 nulmbl 24697 . . . 4 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol)
1411, 12, 13syl2anc 584 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol)
15 unmbl 24699 . . 3 (( ran ((,) ∘ 𝐹) ∈ dom vol ∧ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ∈ dom vol) → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) ∈ dom vol)
168, 14, 15syl2anc 584 . 2 (𝜑 → ( ran ((,) ∘ 𝐹) ∪ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) ∈ dom vol)
175, 16eqeltrrd 2842 1 (𝜑 ran ([,] ∘ 𝐹) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cdif 3889  cun 3890  cin 3891  wss 3892   cuni 4845  Disj wdisj 5044   × cxp 5588  dom cdm 5590  ran crn 5591  ccom 5594  wf 6428  cfv 6432  cr 10871  0cc0 10872  1c1 10873   + caddc 10875  cle 11011  cmin 11205  cn 11973  (,)cioo 13078  [,]cicc 13081  seqcseq 13719  abscabs 14943  vol*covol 24624  volcvol 24625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-acn 9701  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-rest 17131  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-bases 22094  df-cmp 22536  df-ovol 24626  df-vol 24627
This theorem is referenced by:  dyadmbl  24762
  Copyright terms: Public domain W3C validator