| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiccmbl | Structured version Visualization version GIF version | ||
| Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25511.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
| uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| Ref | Expression |
|---|---|
| uniiccmbl | ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | 1 | uniiccdif 25536 | . . . 4 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹)) |
| 4 | undif 4462 | . . 3 ⊢ (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ↔ (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) |
| 6 | uniioombl.2 | . . . 4 ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) | |
| 7 | uniioombl.3 | . . . 4 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
| 8 | 1, 6, 7 | uniioombl 25547 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ∈ dom vol) |
| 9 | ovolficcss 25427 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) | |
| 10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) |
| 11 | 10 | ssdifssd 4127 | . . . 4 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ) |
| 12 | 2 | simprd 495 | . . . 4 ⊢ (𝜑 → (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) |
| 13 | nulmbl 25493 | . . . 4 ⊢ (((∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) | |
| 14 | 11, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) |
| 15 | unmbl 25495 | . . 3 ⊢ ((∪ ran ((,) ∘ 𝐹) ∈ dom vol ∧ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) | |
| 16 | 8, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) |
| 17 | 5, 16 | eqeltrrd 2836 | 1 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∪ cuni 4888 Disj wdisj 5091 × cxp 5657 dom cdm 5659 ran crn 5660 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 ≤ cle 11275 − cmin 11471 ℕcn 12245 (,)cioo 13367 [,]cicc 13370 seqcseq 14024 abscabs 15258 vol*covol 25420 volcvol 25421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-rest 17441 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-bases 22889 df-cmp 23330 df-ovol 25422 df-vol 25423 |
| This theorem is referenced by: dyadmbl 25558 |
| Copyright terms: Public domain | W3C validator |