| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiccmbl | Structured version Visualization version GIF version | ||
| Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25482.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
| uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| Ref | Expression |
|---|---|
| uniiccmbl | ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | 1 | uniiccdif 25507 | . . . 4 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0)) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹)) |
| 4 | undif 4432 | . . 3 ⊢ (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ↔ (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) |
| 6 | uniioombl.2 | . . . 4 ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) | |
| 7 | uniioombl.3 | . . . 4 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
| 8 | 1, 6, 7 | uniioombl 25518 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ∈ dom vol) |
| 9 | ovolficcss 25398 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) | |
| 10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) |
| 11 | 10 | ssdifssd 4097 | . . . 4 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ) |
| 12 | 2 | simprd 495 | . . . 4 ⊢ (𝜑 → (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) |
| 13 | nulmbl 25464 | . . . 4 ⊢ (((∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) | |
| 14 | 11, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) |
| 15 | unmbl 25466 | . . 3 ⊢ ((∪ ran ((,) ∘ 𝐹) ∈ dom vol ∧ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) | |
| 16 | 8, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) |
| 17 | 5, 16 | eqeltrrd 2832 | 1 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 ∪ cuni 4859 Disj wdisj 5058 × cxp 5614 dom cdm 5616 ran crn 5617 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 ≤ cle 11147 − cmin 11344 ℕcn 12125 (,)cioo 13245 [,]cicc 13248 seqcseq 13908 abscabs 15141 vol*covol 25391 volcvol 25392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-rest 17326 df-topgen 17347 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-top 22810 df-topon 22827 df-bases 22862 df-cmp 23303 df-ovol 25393 df-vol 25394 |
| This theorem is referenced by: dyadmbl 25529 |
| Copyright terms: Public domain | W3C validator |