![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniiccmbl | Structured version Visualization version GIF version |
Description: An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 23661.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
uniioombl.1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
uniioombl.2 | ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) |
uniioombl.3 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
Ref | Expression |
---|---|
uniiccmbl | ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniioombl.1 | . . . . 5 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | 1 | uniiccdif 23686 | . . . 4 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0)) |
3 | 2 | simpld 489 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹)) |
4 | undif 4243 | . . 3 ⊢ (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ↔ (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) | |
5 | 3, 4 | sylib 210 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = ∪ ran ([,] ∘ 𝐹)) |
6 | uniioombl.2 | . . . 4 ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) | |
7 | uniioombl.3 | . . . 4 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
8 | 1, 6, 7 | uniioombl 23697 | . . 3 ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ∈ dom vol) |
9 | ovolficcss 23577 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) | |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) |
11 | 10 | ssdifssd 3946 | . . . 4 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ) |
12 | 2 | simprd 490 | . . . 4 ⊢ (𝜑 → (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) |
13 | nulmbl 23643 | . . . 4 ⊢ (((∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0) → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) | |
14 | 11, 12, 13 | syl2anc 580 | . . 3 ⊢ (𝜑 → (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) |
15 | unmbl 23645 | . . 3 ⊢ ((∪ ran ((,) ∘ 𝐹) ∈ dom vol ∧ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹)) ∈ dom vol) → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) | |
16 | 8, 14, 15 | syl2anc 580 | . 2 ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ∪ (∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) ∈ dom vol) |
17 | 5, 16 | eqeltrrd 2879 | 1 ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ∖ cdif 3766 ∪ cun 3767 ∩ cin 3768 ⊆ wss 3769 ∪ cuni 4628 Disj wdisj 4811 × cxp 5310 dom cdm 5312 ran crn 5313 ∘ ccom 5316 ⟶wf 6097 ‘cfv 6101 ℝcr 10223 0cc0 10224 1c1 10225 + caddc 10227 ≤ cle 10364 − cmin 10556 ℕcn 11312 (,)cioo 12424 [,]cicc 12427 seqcseq 13055 abscabs 14315 vol*covol 23570 volcvol 23571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-disj 4812 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-rlim 14561 df-sum 14758 df-rest 16398 df-topgen 16419 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-top 21027 df-topon 21044 df-bases 21079 df-cmp 21519 df-ovol 23572 df-vol 23573 |
This theorem is referenced by: dyadmbl 23708 |
Copyright terms: Public domain | W3C validator |