Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pr2nelem | Structured version Visualization version GIF version |
Description: Lemma for pr2ne 9692. (Contributed by FL, 17-Aug-2008.) |
Ref | Expression |
---|---|
pr2nelem | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn2 4645 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
2 | ensn1g 8763 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | ensn1g 8763 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → {𝐵} ≈ 1o) | |
4 | pm54.43 9690 | . . . . . . 7 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2o)) | |
5 | df-pr 4561 | . . . . . . . 8 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
6 | 5 | breq1i 5077 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ ({𝐴} ∪ {𝐵}) ≈ 2o) |
7 | 4, 6 | bitr4di 288 | . . . . . 6 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2o)) |
8 | 7 | biimpd 228 | . . . . 5 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
9 | 2, 3, 8 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
10 | 9 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))) |
11 | 1, 10 | syl7 74 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o))) |
12 | 11 | 3imp 1109 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 {cpr 4560 class class class wbr 5070 1oc1o 8260 2oc2o 8261 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: pr2ne 9692 en2eqpr 9694 en2eleq 9695 pr2pwpr 14121 pmtrprfv 18976 pmtrprfv3 18977 symggen 18993 pmtr3ncomlem1 18996 pmtr3ncom 18998 mdetralt 21665 en2top 22043 hmphindis 22856 pmtrcnel 31260 pmtrcnel2 31261 pmtridf1o 31263 pmtrto1cl 31268 cycpm2tr 31288 cyc3evpm 31319 cyc3genpmlem 31320 cyc3conja 31326 |
Copyright terms: Public domain | W3C validator |