![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pr2nelem | Structured version Visualization version GIF version |
Description: Lemma for pr2ne 9277. (Contributed by FL, 17-Aug-2008.) |
Ref | Expression |
---|---|
pr2nelem | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn2 4555 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
2 | ensn1g 8422 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | ensn1g 8422 | . . . . 5 ⊢ (𝐵 ∈ 𝐷 → {𝐵} ≈ 1o) | |
4 | pm54.43 9275 | . . . . . . 7 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2o)) | |
5 | df-pr 4475 | . . . . . . . 8 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
6 | 5 | breq1i 4969 | . . . . . . 7 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ ({𝐴} ∪ {𝐵}) ≈ 2o) |
7 | 4, 6 | syl6bbr 290 | . . . . . 6 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2o)) |
8 | 7 | biimpd 230 | . . . . 5 ⊢ (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
9 | 2, 3, 8 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)) |
10 | 9 | ex 413 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))) |
11 | 1, 10 | syl7 74 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o))) |
12 | 11 | 3imp 1104 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∪ cun 3857 ∩ cin 3858 ∅c0 4211 {csn 4472 {cpr 4474 class class class wbr 4962 1oc1o 7946 2oc2o 7947 ≈ cen 8354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-om 7437 df-1o 7953 df-2o 7954 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 |
This theorem is referenced by: pr2ne 9277 en2eqpr 9279 en2eleq 9280 pr2pwpr 13683 pmtrprfv 18312 pmtrprfv3 18313 symggen 18329 pmtr3ncomlem1 18332 pmtr3ncom 18334 mdetralt 20901 en2top 21277 hmphindis 22089 pmtrcnel 30392 pmtrcnel2 30393 cycpm2tr 30408 cyc3evpm 30430 cyc3genpmlem 30431 cyc3conja 30437 pmtrto1cl 30663 pmtridf1o 30670 |
Copyright terms: Public domain | W3C validator |