MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2nelem Structured version   Visualization version   GIF version

Theorem pr2nelem 9618
Description: Lemma for pr2ne 9619. (Contributed by FL, 17-Aug-2008.)
Assertion
Ref Expression
pr2nelem ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem pr2nelem
StepHypRef Expression
1 disjsn2 4628 . . 3 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
2 ensn1g 8696 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
3 ensn1g 8696 . . . . 5 (𝐵𝐷 → {𝐵} ≈ 1o)
4 pm54.43 9617 . . . . . . 7 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2o))
5 df-pr 4544 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65breq1i 5060 . . . . . . 7 ({𝐴, 𝐵} ≈ 2o ↔ ({𝐴} ∪ {𝐵}) ≈ 2o)
74, 6bitr4di 292 . . . . . 6 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2o))
87biimpd 232 . . . . 5 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))
92, 3, 8syl2an 599 . . . 4 ((𝐴𝐶𝐵𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))
109ex 416 . . 3 (𝐴𝐶 → (𝐵𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)))
111, 10syl7 74 . 2 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o)))
12113imp 1113 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  cun 3864  cin 3865  c0 4237  {csn 4541  {cpr 4543   class class class wbr 5053  1oc1o 8195  2oc2o 8196  cen 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629
This theorem is referenced by:  pr2ne  9619  en2eqpr  9621  en2eleq  9622  pr2pwpr  14045  pmtrprfv  18845  pmtrprfv3  18846  symggen  18862  pmtr3ncomlem1  18865  pmtr3ncom  18867  mdetralt  21505  en2top  21882  hmphindis  22694  pmtrcnel  31077  pmtrcnel2  31078  pmtridf1o  31080  pmtrto1cl  31085  cycpm2tr  31105  cyc3evpm  31136  cyc3genpmlem  31137  cyc3conja  31143
  Copyright terms: Public domain W3C validator