MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2nelem Structured version   Visualization version   GIF version

Theorem pr2nelem 9276
Description: Lemma for pr2ne 9277. (Contributed by FL, 17-Aug-2008.)
Assertion
Ref Expression
pr2nelem ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem pr2nelem
StepHypRef Expression
1 disjsn2 4555 . . 3 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
2 ensn1g 8422 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
3 ensn1g 8422 . . . . 5 (𝐵𝐷 → {𝐵} ≈ 1o)
4 pm54.43 9275 . . . . . . 7 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ ({𝐴} ∪ {𝐵}) ≈ 2o))
5 df-pr 4475 . . . . . . . 8 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
65breq1i 4969 . . . . . . 7 ({𝐴, 𝐵} ≈ 2o ↔ ({𝐴} ∪ {𝐵}) ≈ 2o)
74, 6syl6bbr 290 . . . . . 6 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴, 𝐵} ≈ 2o))
87biimpd 230 . . . . 5 (({𝐴} ≈ 1o ∧ {𝐵} ≈ 1o) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))
92, 3, 8syl2an 595 . . . 4 ((𝐴𝐶𝐵𝐷) → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o))
109ex 413 . . 3 (𝐴𝐶 → (𝐵𝐷 → (({𝐴} ∩ {𝐵}) = ∅ → {𝐴, 𝐵} ≈ 2o)))
111, 10syl7 74 . 2 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o)))
12113imp 1104 1 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  cun 3857  cin 3858  c0 4211  {csn 4472  {cpr 4474   class class class wbr 4962  1oc1o 7946  2oc2o 7947  cen 8354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-om 7437  df-1o 7953  df-2o 7954  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360
This theorem is referenced by:  pr2ne  9277  en2eqpr  9279  en2eleq  9280  pr2pwpr  13683  pmtrprfv  18312  pmtrprfv3  18313  symggen  18329  pmtr3ncomlem1  18332  pmtr3ncom  18334  mdetralt  20901  en2top  21277  hmphindis  22089  pmtrcnel  30392  pmtrcnel2  30393  cycpm2tr  30408  cyc3evpm  30430  cyc3genpmlem  30431  cyc3conja  30437  pmtrto1cl  30663  pmtridf1o  30670
  Copyright terms: Public domain W3C validator