![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbsextg | Structured version Visualization version GIF version |
Description: For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
lbsex.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbsex.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsex.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lbsextg | ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsex.v | . 2 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lbsex.j | . 2 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | lbsex.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | simp1l 1198 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝑊 ∈ LVec) | |
5 | simp2 1138 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝐶 ⊆ 𝑉) | |
6 | simp3 1139 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) | |
7 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
8 | sneq 4644 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
9 | 8 | difeq2d 4139 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐶 ∖ {𝑥}) = (𝐶 ∖ {𝑦})) |
10 | 9 | fveq2d 6918 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑁‘(𝐶 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑦}))) |
11 | 7, 10 | eleq12d 2835 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))) |
12 | 11 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))) |
13 | 12 | cbvralvw 3237 | . . 3 ⊢ (∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ∀𝑦 ∈ 𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))) |
14 | 6, 13 | sylib 218 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑦 ∈ 𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))) |
15 | 8 | difeq2d 4139 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑧 ∖ {𝑥}) = (𝑧 ∖ {𝑦})) |
16 | 15 | fveq2d 6918 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑧 ∖ {𝑦}))) |
17 | 7, 16 | eleq12d 2835 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))) |
18 | 17 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))) |
19 | 18 | cbvralvw 3237 | . . . 4 ⊢ (∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑦 ∈ 𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))) |
20 | 19 | anbi2i 623 | . . 3 ⊢ ((𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ 𝑧 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))) |
21 | 20 | rabbii 3442 | . 2 ⊢ {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑦 ∈ 𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))} |
22 | simp1r 1199 | . 2 ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝒫 𝑉 ∈ dom card) | |
23 | 1, 2, 3, 4, 5, 14, 21, 22 | lbsextlem4 21190 | 1 ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 ∖ cdif 3963 ⊆ wss 3966 𝒫 cpw 4608 {csn 4634 dom cdm 5693 ‘cfv 6569 cardccrd 9982 Basecbs 17254 LSpanclspn 20996 LBasisclbs 21100 LVecclvec 21128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-rpss 7749 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20757 df-lmod 20886 df-lss 20957 df-lsp 20997 df-lbs 21101 df-lvec 21129 |
This theorem is referenced by: lbsext 21192 lbsexg 21193 |
Copyright terms: Public domain | W3C validator |