MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextg Structured version   Visualization version   GIF version

Theorem lbsextg 21132
Description: For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
lbsex.j 𝐽 = (LBasis‘𝑊)
lbsex.v 𝑉 = (Base‘𝑊)
lbsex.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lbsextg (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝑠,𝐶   𝐽,𝑠   𝑁,𝑠,𝑥   𝑉,𝑠   𝑊,𝑠,𝑥
Allowed substitution hints:   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem lbsextg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsex.v . 2 𝑉 = (Base‘𝑊)
2 lbsex.j . 2 𝐽 = (LBasis‘𝑊)
3 lbsex.n . 2 𝑁 = (LSpan‘𝑊)
4 simp1l 1197 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝑊 ∈ LVec)
5 simp2 1137 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝐶𝑉)
6 simp3 1138 . . 3 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
7 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
8 sneq 4616 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
98difeq2d 4106 . . . . . . 7 (𝑥 = 𝑦 → (𝐶 ∖ {𝑥}) = (𝐶 ∖ {𝑦}))
109fveq2d 6890 . . . . . 6 (𝑥 = 𝑦 → (𝑁‘(𝐶 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑦})))
117, 10eleq12d 2827 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1211notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1312cbvralvw 3223 . . 3 (∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
146, 13sylib 218 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
158difeq2d 4106 . . . . . . . 8 (𝑥 = 𝑦 → (𝑧 ∖ {𝑥}) = (𝑧 ∖ {𝑦}))
1615fveq2d 6890 . . . . . . 7 (𝑥 = 𝑦 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑧 ∖ {𝑦})))
177, 16eleq12d 2827 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1817notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1918cbvralvw 3223 . . . 4 (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))
2019anbi2i 623 . . 3 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
2120rabbii 3425 . 2 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))}
22 simp1r 1198 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝒫 𝑉 ∈ dom card)
231, 2, 3, 4, 5, 14, 21, 22lbsextlem4 21131 1 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {crab 3419  cdif 3928  wss 3931  𝒫 cpw 4580  {csn 4606  dom cdm 5665  cfv 6541  cardccrd 9957  Basecbs 17229  LSpanclspn 20937  LBasisclbs 21041  LVecclvec 21069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-rpss 7725  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-sbg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-drng 20699  df-lmod 20828  df-lss 20898  df-lsp 20938  df-lbs 21042  df-lvec 21070
This theorem is referenced by:  lbsext  21133  lbsexg  21134
  Copyright terms: Public domain W3C validator