![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbsextg | Structured version Visualization version GIF version |
Description: For any linearly independent subset πΆ of π, there is a basis containing the vectors in πΆ. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
lbsex.j | β’ π½ = (LBasisβπ) |
lbsex.v | β’ π = (Baseβπ) |
lbsex.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lbsextg | β’ (((π β LVec β§ π« π β dom card) β§ πΆ β π β§ βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) β βπ β π½ πΆ β π ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsex.v | . 2 β’ π = (Baseβπ) | |
2 | lbsex.j | . 2 β’ π½ = (LBasisβπ) | |
3 | lbsex.n | . 2 β’ π = (LSpanβπ) | |
4 | simp1l 1197 | . 2 β’ (((π β LVec β§ π« π β dom card) β§ πΆ β π β§ βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) β π β LVec) | |
5 | simp2 1137 | . 2 β’ (((π β LVec β§ π« π β dom card) β§ πΆ β π β§ βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) β πΆ β π) | |
6 | simp3 1138 | . . 3 β’ (((π β LVec β§ π« π β dom card) β§ πΆ β π β§ βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) β βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) | |
7 | id 22 | . . . . . 6 β’ (π₯ = π¦ β π₯ = π¦) | |
8 | sneq 4638 | . . . . . . . 8 β’ (π₯ = π¦ β {π₯} = {π¦}) | |
9 | 8 | difeq2d 4122 | . . . . . . 7 β’ (π₯ = π¦ β (πΆ β {π₯}) = (πΆ β {π¦})) |
10 | 9 | fveq2d 6895 | . . . . . 6 β’ (π₯ = π¦ β (πβ(πΆ β {π₯})) = (πβ(πΆ β {π¦}))) |
11 | 7, 10 | eleq12d 2827 | . . . . 5 β’ (π₯ = π¦ β (π₯ β (πβ(πΆ β {π₯})) β π¦ β (πβ(πΆ β {π¦})))) |
12 | 11 | notbid 317 | . . . 4 β’ (π₯ = π¦ β (Β¬ π₯ β (πβ(πΆ β {π₯})) β Β¬ π¦ β (πβ(πΆ β {π¦})))) |
13 | 12 | cbvralvw 3234 | . . 3 β’ (βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯})) β βπ¦ β πΆ Β¬ π¦ β (πβ(πΆ β {π¦}))) |
14 | 6, 13 | sylib 217 | . 2 β’ (((π β LVec β§ π« π β dom card) β§ πΆ β π β§ βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) β βπ¦ β πΆ Β¬ π¦ β (πβ(πΆ β {π¦}))) |
15 | 8 | difeq2d 4122 | . . . . . . . 8 β’ (π₯ = π¦ β (π§ β {π₯}) = (π§ β {π¦})) |
16 | 15 | fveq2d 6895 | . . . . . . 7 β’ (π₯ = π¦ β (πβ(π§ β {π₯})) = (πβ(π§ β {π¦}))) |
17 | 7, 16 | eleq12d 2827 | . . . . . 6 β’ (π₯ = π¦ β (π₯ β (πβ(π§ β {π₯})) β π¦ β (πβ(π§ β {π¦})))) |
18 | 17 | notbid 317 | . . . . 5 β’ (π₯ = π¦ β (Β¬ π₯ β (πβ(π§ β {π₯})) β Β¬ π¦ β (πβ(π§ β {π¦})))) |
19 | 18 | cbvralvw 3234 | . . . 4 β’ (βπ₯ β π§ Β¬ π₯ β (πβ(π§ β {π₯})) β βπ¦ β π§ Β¬ π¦ β (πβ(π§ β {π¦}))) |
20 | 19 | anbi2i 623 | . . 3 β’ ((πΆ β π§ β§ βπ₯ β π§ Β¬ π₯ β (πβ(π§ β {π₯}))) β (πΆ β π§ β§ βπ¦ β π§ Β¬ π¦ β (πβ(π§ β {π¦})))) |
21 | 20 | rabbii 3438 | . 2 β’ {π§ β π« π β£ (πΆ β π§ β§ βπ₯ β π§ Β¬ π₯ β (πβ(π§ β {π₯})))} = {π§ β π« π β£ (πΆ β π§ β§ βπ¦ β π§ Β¬ π¦ β (πβ(π§ β {π¦})))} |
22 | simp1r 1198 | . 2 β’ (((π β LVec β§ π« π β dom card) β§ πΆ β π β§ βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) β π« π β dom card) | |
23 | 1, 2, 3, 4, 5, 14, 21, 22 | lbsextlem4 20919 | 1 β’ (((π β LVec β§ π« π β dom card) β§ πΆ β π β§ βπ₯ β πΆ Β¬ π₯ β (πβ(πΆ β {π₯}))) β βπ β π½ πΆ β π ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 {crab 3432 β cdif 3945 β wss 3948 π« cpw 4602 {csn 4628 dom cdm 5676 βcfv 6543 cardccrd 9932 Basecbs 17148 LSpanclspn 20726 LBasisclbs 20829 LVecclvec 20857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-rpss 7715 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-drng 20502 df-lmod 20616 df-lss 20687 df-lsp 20727 df-lbs 20830 df-lvec 20858 |
This theorem is referenced by: lbsext 20921 lbsexg 20922 |
Copyright terms: Public domain | W3C validator |