MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextg Structured version   Visualization version   GIF version

Theorem lbsextg 21189
Description: For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
lbsex.j 𝐽 = (LBasis‘𝑊)
lbsex.v 𝑉 = (Base‘𝑊)
lbsex.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lbsextg (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝑠,𝐶   𝐽,𝑠   𝑁,𝑠,𝑥   𝑉,𝑠   𝑊,𝑠,𝑥
Allowed substitution hints:   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem lbsextg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsex.v . 2 𝑉 = (Base‘𝑊)
2 lbsex.j . 2 𝐽 = (LBasis‘𝑊)
3 lbsex.n . 2 𝑁 = (LSpan‘𝑊)
4 simp1l 1197 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝑊 ∈ LVec)
5 simp2 1137 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝐶𝑉)
6 simp3 1138 . . 3 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
7 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
8 sneq 4658 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
98difeq2d 4149 . . . . . . 7 (𝑥 = 𝑦 → (𝐶 ∖ {𝑥}) = (𝐶 ∖ {𝑦}))
109fveq2d 6926 . . . . . 6 (𝑥 = 𝑦 → (𝑁‘(𝐶 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑦})))
117, 10eleq12d 2838 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1211notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1312cbvralvw 3243 . . 3 (∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
146, 13sylib 218 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
158difeq2d 4149 . . . . . . . 8 (𝑥 = 𝑦 → (𝑧 ∖ {𝑥}) = (𝑧 ∖ {𝑦}))
1615fveq2d 6926 . . . . . . 7 (𝑥 = 𝑦 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑧 ∖ {𝑦})))
177, 16eleq12d 2838 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1817notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1918cbvralvw 3243 . . . 4 (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))
2019anbi2i 622 . . 3 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
2120rabbii 3449 . 2 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))}
22 simp1r 1198 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝒫 𝑉 ∈ dom card)
231, 2, 3, 4, 5, 14, 21, 22lbsextlem4 21188 1 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cdif 3973  wss 3976  𝒫 cpw 4622  {csn 4648  dom cdm 5700  cfv 6575  cardccrd 10006  Basecbs 17260  LSpanclspn 20994  LBasisclbs 21098  LVecclvec 21126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-rpss 7760  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-oadd 8528  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-dju 9972  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-0g 17503  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-grp 18978  df-minusg 18979  df-sbg 18980  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-oppr 20362  df-dvdsr 20385  df-unit 20386  df-invr 20416  df-drng 20755  df-lmod 20884  df-lss 20955  df-lsp 20995  df-lbs 21099  df-lvec 21127
This theorem is referenced by:  lbsext  21190  lbsexg  21191
  Copyright terms: Public domain W3C validator