MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextg Structured version   Visualization version   GIF version

Theorem lbsextg 21104
Description: For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
lbsex.j 𝐽 = (LBasis‘𝑊)
lbsex.v 𝑉 = (Base‘𝑊)
lbsex.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lbsextg (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝑠,𝐶   𝐽,𝑠   𝑁,𝑠,𝑥   𝑉,𝑠   𝑊,𝑠,𝑥
Allowed substitution hints:   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem lbsextg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsex.v . 2 𝑉 = (Base‘𝑊)
2 lbsex.j . 2 𝐽 = (LBasis‘𝑊)
3 lbsex.n . 2 𝑁 = (LSpan‘𝑊)
4 simp1l 1198 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝑊 ∈ LVec)
5 simp2 1137 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝐶𝑉)
6 simp3 1138 . . 3 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
7 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
8 sneq 4595 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
98difeq2d 4085 . . . . . . 7 (𝑥 = 𝑦 → (𝐶 ∖ {𝑥}) = (𝐶 ∖ {𝑦}))
109fveq2d 6844 . . . . . 6 (𝑥 = 𝑦 → (𝑁‘(𝐶 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑦})))
117, 10eleq12d 2822 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1211notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1312cbvralvw 3213 . . 3 (∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
146, 13sylib 218 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
158difeq2d 4085 . . . . . . . 8 (𝑥 = 𝑦 → (𝑧 ∖ {𝑥}) = (𝑧 ∖ {𝑦}))
1615fveq2d 6844 . . . . . . 7 (𝑥 = 𝑦 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑧 ∖ {𝑦})))
177, 16eleq12d 2822 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1817notbid 318 . . . . 5 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1918cbvralvw 3213 . . . 4 (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))
2019anbi2i 623 . . 3 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
2120rabbii 3408 . 2 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))}
22 simp1r 1199 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝒫 𝑉 ∈ dom card)
231, 2, 3, 4, 5, 14, 21, 22lbsextlem4 21103 1 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3402  cdif 3908  wss 3911  𝒫 cpw 4559  {csn 4585  dom cdm 5631  cfv 6499  cardccrd 9864  Basecbs 17155  LSpanclspn 20909  LBasisclbs 21013  LVecclvec 21041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lbs 21014  df-lvec 21042
This theorem is referenced by:  lbsext  21105  lbsexg  21106
  Copyright terms: Public domain W3C validator