| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdgfisnn0 | Structured version Visualization version GIF version | ||
| Description: The degree of a vertex in a graph of finite size is a nonnegative integer. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
| Ref | Expression |
|---|---|
| vtxdgf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdg0e.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxdgfisnn0.a | ⊢ 𝐴 = dom 𝐼 |
| Ref | Expression |
|---|---|
| vtxdgfisnn0 | ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdg0e.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | vtxdgfisnn0.a | . . 3 ⊢ 𝐴 = dom 𝐼 | |
| 4 | 1, 2, 3 | vtxdgfival 29454 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 5 | rabfi 9280 | . . . . 5 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ Fin) | |
| 6 | hashcl 14379 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0) |
| 8 | rabfi 9280 | . . . . 5 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} ∈ Fin) | |
| 9 | hashcl 14379 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℕ0) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℕ0) |
| 11 | 7, 10 | nn0addcld 12571 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) ∈ ℕ0) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) ∈ ℕ0) |
| 13 | 4, 12 | eqeltrd 2835 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 {csn 4606 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 + caddc 11137 ℕ0cn0 12506 ♯chash 14353 Vtxcvtx 28980 iEdgciedg 28981 VtxDegcvtxdg 29450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-xadd 13134 df-hash 14354 df-vtxdg 29451 |
| This theorem is referenced by: vtxdgfisf 29461 vtxdfiun 29467 vdegp1bi 29522 vtxdginducedm1fi 29529 finsumvtxdg2ssteplem4 29533 finsumvtxdg2sstep 29534 vtxdgoddnumeven 29538 |
| Copyright terms: Public domain | W3C validator |