MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgfisnn0 Structured version   Visualization version   GIF version

Theorem vtxdgfisnn0 27265
Description: The degree of a vertex in a graph of finite size is a nonnegative integer. (Contributed by Alexander van der Vekens, 10-Mar-2018.) (Revised by AV, 11-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgf.v 𝑉 = (Vtx‘𝐺)
vtxdg0e.i 𝐼 = (iEdg‘𝐺)
vtxdgfisnn0.a 𝐴 = dom 𝐼
Assertion
Ref Expression
vtxdgfisnn0 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0)

Proof of Theorem vtxdgfisnn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vtxdgf.v . . 3 𝑉 = (Vtx‘𝐺)
2 vtxdg0e.i . . 3 𝐼 = (iEdg‘𝐺)
3 vtxdgfisnn0.a . . 3 𝐴 = dom 𝐼
41, 2, 3vtxdgfival 27259 . 2 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
5 rabfi 8727 . . . . 5 (𝐴 ∈ Fin → {𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ Fin)
6 hashcl 13713 . . . . 5 ({𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0)
75, 6syl 17 . . . 4 (𝐴 ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0)
8 rabfi 8727 . . . . 5 (𝐴 ∈ Fin → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} ∈ Fin)
9 hashcl 13713 . . . . 5 ({𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℕ0)
108, 9syl 17 . . . 4 (𝐴 ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℕ0)
117, 10nn0addcld 11947 . . 3 (𝐴 ∈ Fin → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) ∈ ℕ0)
1211adantr 484 . 2 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) ∈ ℕ0)
134, 12eqeltrd 2890 1 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  {csn 4525  dom cdm 5519  cfv 6324  (class class class)co 7135  Fincfn 8492   + caddc 10529  0cn0 11885  chash 13686  Vtxcvtx 26789  iEdgciedg 26790  VtxDegcvtxdg 27255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-xadd 12496  df-hash 13687  df-vtxdg 27256
This theorem is referenced by:  vtxdgfisf  27266  vtxdfiun  27272  vdegp1bi  27327  vtxdginducedm1fi  27334  finsumvtxdg2ssteplem4  27338  finsumvtxdg2sstep  27339  vtxdgoddnumeven  27343
  Copyright terms: Public domain W3C validator